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Structured Abstract 

Context: Consistency of mathematical constructions in numerical analysis and the application of 

computerized proofs in the light of the occurrence of numerical chaos in simple systems. Purpose: To 

show that a computer in general and a  numerical analysis in particular can add its own peculiarities 

to the subject under study. Hence the need of thorough theoretical studies on chaos in numerical 

simulation. Hence, a questioning of what e.g. a numerical disproof of a theorem in physics or a 

prediction in numerical economics could mean. Method: An algebraic simple model system is 

subjected to a deeper structure of underlying variables. With an algorithm simulating the steps in 

taking a limit of second order difference quotients the error terms are studied at the background of 

their algebraic expression.  Results: With the algorithm that was applied to a simple quadratic 

polynomial system we found unstably amplified round-off errors. The possibility of numerical chaos 

is already known but not in such a simple system as used in our paper. The amplification of the errors 

implies that it is not possible with computer means to constructively show that the algebra and 

numerical analysis will ‘on the long run’ converge to each other and the error term will vanish. The 

algebraic vanishing of the error term cannot be demonstrated with the use of the computer because 

the round-off errors are amplified. In philosophical terms, the amplification of the round-off error is 

equivalent to the continuum hypothesis. This means that the requirement of (numerical) 

construction of mathematical objects is no safeguard against inference-only conclusions of qualities 

of  (numerical) mathematical objects. Unstably amplified round-off errors are a same type of 

problem as the ordering in size of transfinite cardinal numbers. The difference is that the former 

problem is created within the requirements of constructive mathematics. This can be seen as the 

reward for working numerically constructive.  
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Introduction 

In the philosophy of mathematics there is an ongoing debate about the nature of  mathematical 

object(s). The question ‘What is mathematics about’ was asked many times (Dummet, 1994). Despite 

perhaps  one’s first impression, such a debate is not at all an esoteric and superfluous affair because 

it makes practical sense to know with what one is dealing: e.g. when venturing into the mathematical 

unknown. 

No big surprise that it turns out we just do not have a  clear view on mathematical objects. 

Moreover, to the practical applied mathematician, it simply seems not to matter very much what a 

mathematical object exactly is as long as it can be related to the phenomenon that must be 

described.  Pure mathematics is, then, just a way to prepare transformations of the representation of 

basically unknown objects sometimes venturing in the mathematically unknown. From this 

perspective it looks as though numbers are ‘intentions’ to describe a ‘picture’ such as Wittgenstein’s 

Tractarian facts (Wittgenstein, 1922): i.e. a thought is a logical picture of facts. The question ‘what 

is(are) the object(s) of mathematics’ is likely also related to the question ‘what is a thought’. Let us 

also refer to Constable (Constable, 1986). In this paper the question is asked: ‘On what grounds is the 

trust in the use of a computer based‘.  

Perhaps we could agree for the moment to let a mathematical object be a multifaceted ‘something’ 

that shows itself, like a chameleon, depending on its context. A chameleon remains a chameleon but 

simply changes its colour when the need arises. We know the chameleon because of its colour but 

we, perhaps, do not need to know the chameleon itself. One can ask the question what the real 

colour of a chameleon is but that question cannot be answered because we cannot look at a 

chameleon without a contextual environment. In the author’s opinion this biological-like picture 

comes pretty close to Frege’s view that mathematics is not about anything in particular.  

In a very crude and ‘cutting corners’ sense we could state that Finitism and Constructivism can be 

seen as a kind of ‘ do not just talk about mathematical objects but try to show them’  response to 

foundational set-theoretical ‘miracles’  like infinite cardinal numbers  with their ordering of ‘size’. 

The reasoning that the chameleon must have a such and such colour is not the same as showing that 

there is a chameleon and that it has this colour. Indeed a chameleon can be overlooked because of 

its colour but there is a difference between the logical mental preparation to catch and to actually 

have one. It is by no means the intention to say that the ‘infinite cardinal colour sequence’ of the 

cardinal number chameleon is impossible. It is only not enough to say ‘there must be a chameleon 

there because this is an outskirt of chameleon territory’. Perhaps in the real animal kingdom one can 

with a certain probability make this inference but with numbers we just do not know. Judging from 

the status of the philosophical discussion (Jaquette, 2002), in essence we do not have enough 

knowledge of mathematical objects to extrapolate into the unknown. Such reasoning seems to make 

sense. It remains to be seen, however, whether or not the finite also is not haunted by similar 

unexpected traits. 

 

The first complete philosophical opposition to the implicit approach viz. the derived necessary 

existence of mathematical objects can be found in Brouwer’s  ‘ intuitionism’. For a review on 



Brouwer’s position see Brouwer (Brouwer, 1999). He rejected logic as the basis of mathematics and 

questioned the omnipotence of the law of the excluded middle.   A later  approach  came from E. 

Bishop who founded constructivism in mathematics. To Bishop a computer program was an ultimate 

expression of a mathematical truth. The idea ‘ do not just talk about objects but show them’  as a 

demand for the practical use of the existential quantor   is translated in (extreme form) 

constructivism by ‘   can be translated as… there is a computer program that can compute or store  

x‘.  The latter is of course an extreme requirement, because I am also allowed to say    when I can 

do the computations etc on a piece of paper. The general idea, however, is clear. Here we will accept 

the computer program metaphor for   .  

Many set theoretical existence theorems turned out to be of great generality but devoid of much 

computational meaning. In this paper it is asked if all overgeneralization of concepts really vanishes if 

we employ a computer storage and processing as a metaphor for mathematical objects. Note that in 

the time of Bishop’s claim of constructivism the computer was still a relatively new phenomenon. 

Nowadays most people do not live their life without using a computer. Socially a computer brings its 

own peculiar problems. It is also time to try to find out if a computer also cannot be ‘just a new 

source of misconception’ in foundational mathematics. Why should the use of a numerical simulation 

with algorithms or a computer proof (Maietti, 2009) be without its own peculiarities.  

 

Difference-differential quotients  

Preliminaries 

Finitism and Constructivism in a practical numerical mathematics setting builds from the integers 

1,2,3,.... The set    is created from the set   of positive integers 1,2,3…, excluding zero, by the 

elements    
 

 
  with      . The set    contains the elements     

 

 
  with      . The set 

  of rational numbers is the union of both sets    and   . In a computer on the other hand we only 

have a finite subset of the rational numbers      to our disposal. Hence, cutting some philosophical 

corners again, we can say that it looks like Finitism is to Constructivism as numerical analysis is to 

solving continuous partial differential equations. 

Let us start with a simple quadratic function                      . Here, in accordance 

with the idea that existential and for-all quantors refer to constructible entities, let us suppose that 

           with    . The employed function somewhat resembles a logistic function where 

chaos in numerical terms are already being studied (Munkhammar, 2010).  

For the function         let us suppose that       
 

  
     . Then it is straightforwardly 

found that                     , which is        and       the simple logistic function 

    . Here, however we do not study         but the behaviour of its second order difference 

quotients. In addition, the algorithm does not follow iteration along a logistic map.  

 



In e.g. physical chemistry there is another reference to numerical chaos (Sung, Moon, & Kim, 2001). 

Let us note beforehand that in the computer (or better in       there can be two types of numerical 

errors, truncation and round-off errors. Truncation arises from finite Taylor series. Round-off arises 

from finite numerical precision. 

The constructability of the numbers and the employed functions reside in the fact that they can be 

created and stored in a computer.  Concerning the constructability requirement, the computer is 

only a numerical aid. In theory, one could also write the numbers down and do the to be given 

algorithmic operations by hand. It would make our numerical experiments rather tedious but still not 

impossible.  

Mathematical definitions and concepts  

For a specific selection of λ this quadratic polynomial can be written in an even more simpler form, 

namely, when   
     

  
 we have for                     the polynomial           . 

Here,          . As is well known the differential quotient of       depends on the difference 

quotient 

  

  
 
            

  
 

From differential calculus it is then easy to see that, when     , the first derivative of       is 
  

  
         

  

  
   is     .  

As we can see from comparing       with         both    as well as    depend on       when 

  
     

  
. In order to make this obvious let us define requirements for to be used       pairs.  

In the first place we are randomly given two rational numbers   and   with     and select the   

such that      . Denote this with        . In the second place two neighborhood sets   
     

and   
     are defined for random        as 

     
                     

 

 
                      

and 

     
                     

 

 
                     

with          
       

    .  

 

The previous two definitions allow us subsequently to randomly draw         and         such that 

           and      
     for      . Based on the two pairs         and         the difference 

                                                                                



can be constructed. Here, for brevity,                         and of course,            

  
       

    .  Denoting the use of         with (i=1,2) in the g functions as index the difference 

   is 

         
         

   

     

Such that, for     ,        ,  the obvious                                                

  

  
          

follows. Hence, if                 then the same differential quotient would arise from  
  

  
  .  

 

If we return to the form         and replace   with the arithmetic average of the two forms that 

arise from    and   , i.e.             , when,     
   

   

   
 , i=1,2, then the difference quotient 

can be written as 

 

       

       
 
  

  
        

   
      

     
      

 

             
 

When      
     for sufficiently large n, the   will not vary too much and no great numerical 

differences for relatively large   and  , are to be expected with: 
  

  
        .  

 

Second order differences 

In order to obtain a second order difference coefficient it is necessary to select         and         

in addition to the  two pairs         and        . In vector notation the following difference can be 

defined 

  
  

  
           

  

  
      

  

  
      

Similar to            and      
     for       and        we also must have            

and      
     for       and      .  

Subsequently, let us define  

            
 

 
        

 

 
        

From the previous two definitions it follows that a difference quotient  



  
  
  

 

  
 

 

  
 
  

  
  

can be computed. From the definition of              we can subsequently derive that  

           

       
 
 

 
   

 

 
  

with  equal to                .   

Note that, when   
  

  
  is  

  

  
         

  

  
     it follows that  

  
  

  
 

  
  . 

Multiplying 
 

  
 
  

  
  with 

           

       
 then gives the following expression                                                 

                                           
           

       

 

  
 
  

  
  

 

 
   

 

 
 
 

  
 
  

  
                                                        

From equation (*)  the left hand side is simply the replacing of    in the difference denominator by 

           . On the right hand side of (*) we have  

 

 

    
 

 

        
           

       

 
 

        
 
 
     

 
 

            
 

 

Hence, (*) becomes 

 

   
 
  

  
  

 

 

 

  
 
  

  
     

 

   
 
 

   
 
  

  
  

When,            then the following important equation arises 

                                                       
 

 

 

  
 
  

  
      

 

   
 
  

  
                                                                     

And algebraically    .   

 

 

 

 



Let us, for completeness, tally the requirements we used to obtain equation (**). There are three: 

i.      , with,                   . 

ii. We randomly select   and   in               such that                   and          

      . 

iii. We randomly select the parameters   and   in      
      

  such that            
     

and            
      for      . 

From the definition of the first difference quotient it follows that,  
 

 

 

  
 
  

  
   . This implies, 

observing equation (**), that for                there will by necessity be      when 

      . Hence from requirement i. It follows,              . Looking at (**) we see that it 

can be expected to obtain under this limit condition,       and     , the result 
 

 

 

  
 
  

  
   . 

The     occurs when               faster than              . 

 

Algorithm 

The convergence of   to zero was studied using the following generating algorithm. 

i. Initially, n=0, we have   
   

           and   
   

   
   

        ,  where e.g.         . 

The pair         
   
   

   
  was initialized similarly. Note        is a random number 

between 0 and 1. 

ii. Initially, n=0, we selected      and      randomly in        with e.g. m=1000. 

iii. Based on      and      the     
   

 
 

 
      

   
      

   
   

    is computed. Here, 

     
 

  
      and the    

   
only is computed when  

     
   

   
   

   
   

   
   

 
          We 

study real λ. If not then     
     

    
   

.  

iv. Hence,    
   

                   
   

   
   
  
   

    
   
  
   
  and    

   
 

             , similar, can be obtained.  When 

v.     
   

   , the   
   
 and   

   
 are interchanged together with interchanging   

    and   
   . 

For    
   

  ,  a similar interchange occurs. In addition, if      
   

    
   

 the       and      

and the      and      are interchanged.  

vi. Subsequently   
   

                         
 

 
   

   
 

 

 
   

   
. 

vii. Together with      
   

   

   
    

 

viii. With the random starting position in           ,              the following n=0,1,...N 

sequence is started for n: 



ix.  
  
     

   
   

                                  

  
     

 
 

  
   

     
      

     
  
    together with  

     
   

          and   
       

x.  

  
     

   
     

   
   
                             

  
      

 

  
       

     
    

   
  
     

  
  where the next b vector entries are obtained 

from 

xi.  
  
     

   
   

   
   

  
     

   
   

   
   
    and the            for n=1,2,...N.  

xii. The functional form is:   
                    dropping the sub- and superscripts 

for the moment. Note that    
     ,    

      and   
     

 are computed from ix. , x. and xi. 

but using the conditions already mentioned in iii., iv. and v.   

xiii. Subsequently, we compute  
  

  
                  

    
     

   
     

      
     

   
     

 

   
       and 

xiv.  
  

  
                  

    
     

   
     

      
     

   
     

 

   
      and with the use of the two first 

order difference quotients the necessary second order quotients from equation (*) are 

obtained .  

xv. 
 

  
 
  

  
                               

 
  

  
                  

  

  
                

  
      together with 

xvi.           
       

        
 with 

xvii.  
 

   
 
  

  
                                        

 
  

  
                  

  

  
                

   
     . 

xviii. Then       and go to iii. until a sufficient number of iterations has been performed that 

simulate taking the limit:                faster than              .    

xix. Only the data points that produces 
 

  
 
  

  
                                 are 

displayed. 

The display condition xix can be justified noting that theoretically we expect the second order 

differential to be equal to 2. 

Results 

Here the results of the algorithm of the previous section are presented. In the first place it is 

important to note that the requirements belonging to equation (**) are obeyed in the numerical 

computations. We found that in a typical run the    ,     and    behaved as expected (see the 

figure below). Here ,       is the driver of the limit. Note that the x-axis shows the iteration step 

whereas the y axis in the figures below represent the to-be investigated entities from the algorithm. 



    

  

Figure 1 Check on the required behaviour of the    ,     and    

 

Concerning the   its behaviour in the computations confirms the expectations from the figure above 

and with this we think the algorithm complied to requirement i. 

 

  

Figure 2 The behaviour of the   in the numerical computations. 

 

Concerning the second requirement, i.e.   and   in               such that                   

and                 from the following to figures it is clear that the algorithm did not violate ii. 

For the x we see the following figure. 
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Figure 3 Behaviour of the x variables in the algorithm. 

 

For the y variables we obtain in a typical run . 

 

  

Figure 4 Behaviour of the y variables in the algorithm.  

 

Hence, we may conclude that requirement ii. is not violated in the algorithm.  
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The third requirement is that the b vector remains within close range of unity or, equivalently ,   and 

  in      
      

  such that            
     and            

      for      . 

For b1 we show  

 

  

Figure 5 The requirement that b vector remains within close range of unity. 

 

The b2 behaves similarly. Hence the algorithm also complies to requirement iii. 

 

The important result is that the numerical trend in equation (**) is that      and           .  

  

Figure 6 Iteration steps n=1,...N (N=8000) for    from equation (**). 
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This result is remarkable because for increasing step in the iteration or, equivalently, a next step in 

the limit             under the requirements i., ii. and iii., we see the    reaching a 

asymptote      and            instead of steadily approximating to zero.  

 

The impression of reaching a asymptote for      and            is supported by a run with 

              
 

  
 
  

  
                                     . We sampled       from 

the         total data points.  For    
      

 
           which is the numerical 

equivalent of equation (**) we found 

  

Figure 7 Result for    
      

 
           in a run with         total number data points resulting in a sample 

of        with d2HdGR in the interval (1.99,2.01). 

 

It is not shown in the previous figures but it is obvious from the algorithm that    
   

   and that   

   
   
   

   
        and    

   
   

   
        .  

 

Conclusion and discussion 

In the paper a numerical trend, presented in figures 6 and 7, of the   of equation (**) was found that 

runs counter to the basic algebra of the difference quotient. The observed trend is not accidental and 

appears to be similar nearly every time the (randomly starting) algorithm is run. The requirements in 

the iteration are complied in the algorithm as can be seen from the figures in the previous section. 

Moreover, the exclusive display of data points having  
 

  
 
  

  
                                 

can be justified because for those points comes closest to the differential quotient that one aims at 

in the iterative numerical equivalent of taking the limit:               .  
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In a run of     iterations, data points following the display condition                 occur 

approximately 2000 times. In a run of     iterations, data points following the display condition 

                  occur 125 times.  

In addition it should be noted from equation (**) it straightforwardly follows that mathematically 

   . Perhaps superfluous, it also follows from the fact that     
 

   
 
  

  
   

 

   

 

   
 
  

  
  

because  equal to                .   It then is easy to see that              because 

   
 

 
         . Hence,     

 

   
 
  

  
    

 

 

 

  
 
  

  
  and from (**) we have that    .   

Witnessing figures 6 and 7 we did not find a steadily convergence of      to zero for increasing 

iteration step          .  No doubt the argument comes to mind that the recurrence of the trend  

     and            under the conditions showing the ‘favoured’ data points is a, principal, 

flaw somewhere in the computations of difference quotients not inherent in the data of the function. 

However, what kind of flaw would that be?  

If we assume there was no error made in the translation of the algorithm to the program, then the 

finitude of the precision of the computer comes to mind as being the possible source of the 

persistence of the error    . In the simulation we employed the IEEE 754-2008 Standard for 

Floating-Point Arithmetic. This standard is the most widely used for floating point computations. 

Moreover, although it is not constructive evidence, it can be argued that an asymptote- , like in e.g. 

figure 7, will recur under better precision conditions but only later in the sequence because the 

precision of the computer is higher. 

Furthermore but no surprise, it makes no difference if one runs the algorithm in VBA on a Toshiba 

(with Windows 7) or a HP (using Windows Vista) computer.     

A second argument against the correctness of the conjectured asymptote-  is that it indeed makes a 

difference which algebraic expression is used in the algorithm. With the present function,         

              one can verify that for   of the order of         and   of the order of  

        the first order difference quotient in the form 

 
  

  
      

      

   
   

      
     

      
 

             
 

is stable and produces values around unity when conditions i., ii. and iii. of the previous section are 

observed. However, the algebraic equivalent 

 
  

  
      

        

   
         

  
 
              

             
 

is unstable and produces a, ‘    ‘, fluctuating result such that      
  

  
      

        
      . For 

the stable form we do have       
  

  
      

      
      . Hence, algorithms obtained from the 

function         are vulnerable to the employed algebraic form. 



However, the asymptote-  conjecture for equation (**) is a stable numerical recurring trend in the 

numerical simulation of the quotients.   

Another argument against                   could be that the algorithm is a bad way to 

numerically approximate a second order derivative. It should be noted that the algorithm obeys 

              faster than               such that     . In the body of the paper 

we already showed that on the level of g-variables in            the expected second order 

derivative readily obtains. As a check in the algorithm we, in addition, observe the second order 

difference quotient        approaching the value of  2 in the recurrent limit process of the 

algorithm. 

In case of the restriction                     the following figure shows two stages in the 

iteration where        is in the interval (1.99,2.01). 

  

Figure 8 In the restrictive condition                   the approximate first 70 selected data points run from the 
2350-th to 2480-th iteration step. The rest obeying the condition                    occur between the 47417-th 
and the  55081-th step in the iteration.  

From figure 8 we learn that, in this computation, at least two times the algorithm came      

            close to computing the second order derivative of           .  

Moreover, in constructivism the computer is tacitly supposed to be a passive numerical aid. Indeed 

the algorithmic results for  
  

  
      

      
  and  

  

  
      

        
 is already a caution to a  numeric 

constructivist proof. But instability of computations is easily detected while the recurrence of a 

     and            appears to point at a more subtle numerical phenomenon. At its least the 

possibility of similar phenomena like      and            should be recognized as a possible 

nuisance in the use of certain numerical recipes both in constructive as well as in applications like 

financial mathematics. A financial mathematical application that may come to mind and is the pricing 

of options. In the latter case, underlying variables e.g. our        variables, can be underlying 

economic entities influencing the behaviour of the price of the option, e.g. expressed in       . 
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If we accept the conjecture      and           , it can be stated that constructivist and 

numerical analysis may explore the unexpected where algebra and analysis lead to the obvious, but 

necessary, basic conclusion. Although a vanishing of the asymptote-  ‘on the long run’ is to be 

expected from the algebra, there is no numerical proof constructed yet that for very small      in the 

given algorithm, the curve will rise to zero such as expected from algebra and analysis. This poses a 

problem for the idea that ‘each constructive result T can be realised as a computer program requiring 

minimal preparation.... ‘ (Bishop, 1967).   

 

Moreover, how is one to ‘proof’ the vanishing of the asymptote in     , i.e.     ,   in a strict 

mathematical constructivism? Looking at equation (**) it is obviously true but the algorithm suggests 

that we philosophically could be talking  about the invisible colour of the chameleon like we perhaps 

are doing with the infinite cardinal numbers and their implicit order. Agreed we could run longer 

chains of computation. However,       iterations already is quite substantial and the chance 

arises that the numerical activities of the computer loose meaning because of a finite numerical 

precision.  

We attempted a test run of       and                   . 18 data points were found and 

the behavior still is towards an asymptote (see figure below) 

 

  

Figure 9 Behaviour of      with total number of iterations       in the restriction                   .   

 

Note that from Figure 9, we can observe that            instead of            as in the 

previous analyses. In that respect, it should also be noted that, if in the algorithm, the power, p,  of 

the epsilon in 
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then the asymptote and appears to be     
  

    
 ,  for at least some of the       in some of 

the parameter choices of the algorithm described previously, given the display             

       .  

The question can now be raised if numerical results faithfully follow the mathematics that is intended 

by the (constructivist) theorist. The ‘minimal preparation’ part of Bishop’s claim, at least those were 

numerical analysis is used, can already be questioned with the ‘numerical instability versus algebraic 

equivalence’ argument. But we showed it can become more subtle without a constructivist or a 

builder of e.g. physics or numerical economical models,  noticing it. Note that especially with 

economical models there is a substantial possibility of having deeper structures (our,   and   

variables) that co-determine the behaviour of more global variables (our,         ) in a law (our   

     ). 

Apparently, numerical simulation sometimes can add its own peculiarities to the topic one is 

researching. This is also reported in other numerical studies more in relation to chaotic dynamical 

systems. For instance computed non-periodic solutions of chaotic differential equations are  the 

consequence of unstably amplified round-off errors, and are not approximate solutions of the 

associated differential equations (Yao, 2005). Our system is relatively simple in relation to the 

Lorentz equations that Yao is discussing. Interestingly, we select our initial values                and 

     at random, but admittedly within restrictions, and still observe the recurrence of the asymptote 

in the error term. To some this excludes ‘chaos’ but we must note that the parameterization 

influences the nature of the asymptote in error term. Of course we are not dealing with numerical 

integration of partial differential equations like Yao but because of numerical behaviour of 
 

   
 
  

  
  

in the following figure 

  

Figure 10 Numerical behaviour of 
 

   
 
  

  
  in the algorithm. 

it makes sense to suspect that chaos in the numerical computation of the error is the cause of the 

asymptote in our simple second order difference system. Yao also argues against the dependence on 

the initial values as a common sign for numerical chaos. 
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Implications for philosophical problems in physics modelling 

The possibility of unstably amplified round-off errors (such as in figure 10) also touches upon a point 

which, according to the present author, can be described as the ‘still to be better qualified’ cry for 

computer program ‘proof’ in Bell theorem related foundational physics.   

Of course, it all depends on what one wants to consider to be proof in one’s field. However, classical 

mathematical physics proof of the incompleteness of Bell’s theorem already was given (Geurdes, 

2010) and (Geurdes, 2011). Nevertheless the scientists involved insist on numerical proof. In view of 

our results on a very simple system, they might be overlooking the peculiarities of a numerical 

experimentation. The possibility or impossibility of a numerical disproof of Bell’s theorem, as can be 

seen from our conjecture      and     
  

    
 ,  is perhaps also not the philosophers stone.  

Moreover, there appears an uneven handed approach to a mathematical disprove of Bell’s theorem. 

The experimentalists and physics philosophers obvious did not require any numerical proof before 

accepting the philosophically equally feeble explanation ‘non-locality’ in quantum theory. The idea 

that a computer is equivalent to a physical experiment is highly questionable because a computer 

only may work with finite numbers in a certain precision. Bell’s theorem has a broader scope (Bell, 

1964) and because we do not know nature, locality in a domain that escapes computer simulation 

but within the boundaries of the theorem, cannot be excluded.  

Constructivist numerical analysis  

Perhaps the demand for computer simulation in foundational physics also touches upon the use of 

computations that could create its own sphere of ‘magic’. The present paper shows that numerical 

simulation may add its own peculiarities to a computer view of mathematical objects and blur its 

purity of representation. In practical numeric analysis the phenomenon of asymptote error terms is 

known. The reader is referred to e.g. the construction of the Crank-Nicholson method for the 

numerical solution of the one-dimensional heat equation  (Ames, 1992). However, a thorough 

investigation in the role of the persistence of numerical errors in theoretical numerical analysis 

appears necessary. In a single phrase: Unstably amplified round-off-error chameleons thrive in     .  
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