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COMPUTABILITY IN QUANTUM MECHANICS l 

In this paper, the issues of computability and constructivity in the mathematics of 
physics are discussed. The sorts of questions to be addressed are those which might 
be expressed, roughly, as: Are the mathematical foundations of our current theories 
unavoidably non-constructive: or, Are the laws of physics computable? 

These questions are relevant to the foundational debate with respect to the issue 
of constructivism. Our current physical theories are formulated using the power
ful, non-constructive techniques of classical analysis. The constructivist will want 
to re-formulate such theories constructively, while retaining their empirical con
tent. It is not immediately clear whether this possible. There are, of course, varieties 
of constructivism, but the core of the interesting varieties seems to be an algorith
mic attitude - a concern with computing the quantities of whose existence classi
cal analysis assures us. If this is what lies at the core of constructivism, then what is 
non-computable is non-constructive, and an irremovable breakdown of computabil
ity in a physical theory would preclude a constructivist re-formulation of the the
ory. If this were to happen, it would render unattractive any constructivism which 
held, not merely that constructive methods are preferable, where available, to non
constructive mathematics, but that non- constructive mathematics is devoid of cog
nitive significance. 

The question also touches upon the issue of artificial intelligence. In discus
sions about whether a machine is possible which perfectly mimics the behavior of 
an intelligent being, one often encounters, with various degrees of explicitness, ar
guments such as the following: the human brain is just another physical system, and 
so can be simulated by a computer, if only we understand its working well enough. 
A lucid discussion of such arguments was presented by Hao Wang at a meeting of 
the Kurt GOdel Society in 1989 (Wang 1990) and again in an article published in 
1993. As Wang points out, there are two critical assumptions in such arguments. 
One is the assumption of physicalism, that the activities of the brain, or some other 
physical object, suffice to account for intelligent behavior; the other is the assump
tion Wang calls "algorithmism of the physical"- that the actions of physical ob
jects can be captured algorithmically. The assumption of physicalism has received 
a great deal of attention. The assumption of algorithmism for the physical has of
ten gone undiscussed or even left implicit in the formulations of such arguments. 
A notable exception is Roger Penrose, who seeks to ground non-computability in 
human behavior on non-computability in the fundamental laws of physics (penrose 
1988,1989,1994). 

So, is it true that the laws of physics are, at bottom, computable? 
In any attempt to examine this question, we must examine our physical theo

ries. It is, after all, theOries, not things, which are formulated mathematically, and to 
33 



14 WAYNE C. MYRVOLD 

which mathematical notions such as computability and constructivity apply. Phys
cal theories, typically, represent the state of a system by a point in some met~c 
.pace, such as the phase space of classical dyna~cs or the ~lbert space used m 
~uantum mechanics. Along with such representatIons go certam real-valued ~n~
ions which give the values of physical quantities in a state represented by a pomt m 
:he space in question- for example, the function which gives the kinetic energy of 
I classical particle as a function of its location in phase space. In quantu~ mechan
ics there is no comparable function giving the kinetic energy of a particle whose 
.tate is represented by a vector in Hilbert space; in its place is a functio~ mappin~ 
vectors in Hilbert space and Borel subsets of the real line onto numbers m the urnt 
interval which are interpreted as the probability that a measurement of the energy 
of the p~rticle will yield a result in a given Borel subset o.f the real.lin~ ... 

If the theory is deterministic, there will also be a functIon mappmg Irntlal states 
onto states at later times. This time- evolution function, together with the functions 
specifying the values of physical quantities, yield testable predictions, as, presu~
ably, some among the physical quantities specified by the state of the system will 
be measurable. 

In actual practice, it can be very difficult to achieve usable ~pproxim~ti.ons to 
the predictions of a theory even when it is known that the deSired quan~ltJes are 
computable in principle. The working scientist needs, not merely an al~onthm, ~ut 
a feasible one, and often considerable ingenuity goes into the construction and Im
plementation of such algorithms. We will not consider such matters here, however, 
concentrating instead on the existence or non-existence of alg~rithms for co~put
ing the functions appearing in the theories. It will be converuent to entertam the 
fiction of an ideal computor who can produce the value of any computable function 
in negligible time. . 

Of the functions appearing in the theory, two sort of questIOns may be asked: 

• Are the functions computable (in the appropriate sense)? 

• Do the functions preserve computability, that is, do they map computable 
states onto computable states or numbers? 

The answers to the two questions need not be identical, although, on any ~eason~ble 
explication of 'computable function', an affirmative answer to the first will entad an 
affirmative answer to the second; a computable function ought to map comput~ble 
points onto computable points. An affirmative answer to the second doe~ not Im
ply an affirmative answer to the first; a function might ma~ co~putable pomts onto 
computable points without doing so in a uniformly algonthnuc way. . 

Some of the predictions of a theory concern the value of measurable quanti
ties. Others may concern the long-range behavior of the system, such as whether 
the system will ever leave a certain volume of phase space: We shou~d, theref~re, 
distinguish between predictions which are testable by expenm~nts taking place In a 
pre-defined, bounded region of space-time, and predictions.w~Jch. are not. Only t~e 
former should be considered measurable predictions. This IS slgru.ficant ~~ause, Jf 
the dynamics of the theory permit the construction of a physical mstantJatlon of a 
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TUring machine, the corresponding halting problem will arise, so that certain fea
tures of the long-range behavior ofthe system will not be an effectively computable 
function of its initial state. TUring machines have been constructed (conceptually), 
not only out of electronic components, but of colliding billiard balls and also quan
tum systems.

2 
Such non-computability is routine, and hardly counts as an instance 

of the physics outstripping effective mathematics, as, in such systems, the state of 
the system at any given time is an effectively computable function of the initial data. 

In practice, increasing the accuracy of a measurement often requires consid
erable effort and ingenuity, and not infrequently the development of entirely new 
techniques. Just as we will ignore practical limitations on computation, we will also 
!gnore pra~ticallimitations on experimental precision, and imagine, as a compan
IOn to.our Ideal computor, an ideal experimenter, who can measure any measurable 
quantity to any desired degree of precision. 

If a physical theory invokes non-computable functions, then its mathematical 
formulation is non-constructive. If nevertheless every measurable prediction of the 
theory from computable data is a computable number, the constructivist might still 
attempt to capture such predictions in a constructivized re-formulation of the the
ory. In such a case, showing that the predictions are non-computable functions of 
the input data makes clear what obstacles lie in the path of such an attempt. If, 
ho~ever, there are measurable predictions which are not computable numbers, then 
an Ideal measurer can outdo an ideal computor, and one must either accept non
constructivity in the formulation of the theory or hold that the predictions of the 
theory are wrong. 

Thanks to ChUrch and Turing, we have a satisfactory explication of the notion of 
a computable function of the natural numbers. We can use this to define computable 
real numbers and computable sequences of real numbers. 

In order to extend the notion of computability to functions of a real variable 
imagine a computer program which computes a function F(x) as follows. Th~ 
program operates with rational approximations to both the arguments x and values 
F(x~. The i.nitial in~ut to the program consists of a number k, indicating that an out
put JS required w.hlch approximates the value of F(x) to within 2-k • The program 
then responds WIth a request for an rational approximation to x within a certain 
degree,. Wh~ch it specifies. As the computation proceeds, it may request further 
approxI.matlOn~ to x. After ~ fini~e amount of time, the program must respond with 
the deSIred rat~o~al a~proxlmatlOn to F(x). The class of functions computed by 
such. programs IS Identical to a class of functions defined by A. Grzegorczyk (1955) 
and JS, t~erefore, known as the class of Grzegorczyk-computable functions. Note 
~hat nothmg has been said about how the rational approximations to x which are fed 
mto the program .are obtained. Nothing in the way the program works requires the 
value of x for whJch the function F(x) is computed to be a computable number. As 
far ~~ the.program is concerned, the source of inputs could be replaced by a "magic 
box whIch generates rational approximations to some non-computable number. 
We thus obtain, by this scheme, a function F which is defined for all values of the 
argument, not merely the computable ones. 
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A program for computing a functionF must respond with a value of F(x) after 
receiving only a finite approximation to the argument x, and so ''knows'' only that 
( lies within a certain small interval. In so responding, it is, in effect, asserting that, 
for all values of x within that interval, F(x) differs from its output by an amount 
less than the required degree of precision. This means that a computable function 
is always continuous. Grzegorczyk (1957) showed that a function F : lIt -+ lIt is 
Grzegorczyk-computable if, and only if:3 

1. For any computable sequence {xn }, {F(xn )} is a computable sequence. 

2. F is effectively uniformly continuous with respect to rational segments. That 
is, there isa recursive functiong(n,m,k) such that for all n,m,kE N andx,y E 
[Q(n),Q(m)), Ix- yl < 2-g(n,m,k) implies IF(x) -F(y) I < 2-k. 

That all computable functions of a real variable are continuous may seem counter
intuitive. It might seem obvious, for example, that such a simple function as the step 
function 

H(x) = { 0, x < 0 
1,x ~ 0 

ought to be classed as computable.4 

If, however, to be computable means that there is a uniform, effective method of 
finding values from arguments, then it ought to be the case that a computable func
tion map computable sequences into computable sequences. It is not the first clause 
of Grzegorczyk's characterization of computability which strikes some as implau
sible, but rather the second clause asserting effective uniforin continuity. Yet the 
step function does not even satisfy the first clause; it maps some computable se
quences onto non-computable sequences. To see this, suppose an effective coding 
of Turing machines has been given. Define a computable double sequence of ratio
nals {qlcn} as follows: if Turing machine Tk does not halt, on input k, in n steps or 
fewer, qlcn = 0; if Tk does halt on input kin n steps or fewer, let w be the number of 
steps taken by the machine before halting, and take qlcn = _2-w. Then {qlcn} con
verges to a Iimitxk which is equal to 0 if Tk does not halt on input k, and is less than 
o if Tk halts on input k. Moreover, Iqlcn - xkl < 2-n for all k, n. {Xk} is, therefore, a 
recursive sequence of real numbers, but 

() { 
0, = 

H Xk = 1, = 
if Tk halts on input k 
if not. 

The halting problem is known to be recursively insolvable. Thus, if a computable 
function must map computable sequences onto computable sequences, the step 
function is not a computable function. 

S. Mazur (1963: 100) has proven that any function which maps computable 
sequences onto computable sequences is continuous in the computable reals. If 
one accepts that a computable function should map computable sequences onto 
computable sequences, this theorem eliminates simple examples, such as the step 
function, which have jump discontinuities, as candidates for computable functions. 
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It is true that there are functions which map every computable sequence onto a 
computable sequence which, nevertheless, are unbounded, hence discontinuous, 
as they approach some non-computable numbers.5 Such functions, however, 
are rather bizarre and less appealing as counter-examples to the claim that all 
computable functions of a real variable are continuous. 

The thesis that computable functions must be continuous has a long history 
among constructivists. It was, to the best of the author's knowledge, first enunciated 
by ~orel in 1912, in an insightful discussion of the notion of effective calculability 
which presages many of the later results of recursive function theory. It owes much 
of its currency among constructivists to Brouwer, who devoted a great deal of space 
to attempts to prove that an effectively calculable function (Brouwer acknowledged 
no other kind) must be continuous everywhere if it is defined everywhere (see, e.g., 
Brouwer 1927). In honor of these two, and in analogy to the Church-Turing thesis, 
I call the thesis that an effectively calculable function of a real variable must be a 
continuous function the Borel-Brouwer thesis. 

Though there is, as yet, no defense of the identification of effectively calcula
bility with Grzegorczyk-computability comparable to Turing's tour de force in de
fense of the Church-Turing thesis, it is hoped that the most obvious objections to 
this identification, based on the supposed implausibility of the thesis that no discon
tinuous functions are effectively calculable, have been forestalled by the discussion 
above. 

The solutions to differential equations do not always depend continuously on 
the data. The now-classic example of this was made famous by Jacques Hadamard 
([1922J 1952: 33-38). The example concerns the two-dimensional Laplace equation 

cPu cPu 
ax2 + ay2 = o. 

The solution u(x,y) of this equation is uniquely determined by specifying the value 
and rate of change of u along the line y-axis: 

u(O,y) = uo(y) 
au 
ax (O,y) = Ul(Y) 

Let 

uo(y) = 0 

Ul(Y) = 
sin(ny) 

n 

where n is some number. The corresponding solution is given by 

1 
u(x,y) = 2n2 (lI" - e- IIX

) sin(ny), 
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;0 

u(l,y) = 2~2 (e" - e-n
) sin(ny), 

)UPpose, now, that all we know is thatuoCY) and UICY) differ from zero by an amount 
less than some small positive number E. Since e" /n2 increases without 1irnit as n 
increases, we can make u(l,y) as large as we want while maintaining uoCY) = 0 
and IUlCY)1 < E for all y. Chaos theorists study systems whose behavior depends 
continuously but sensitively on the initial conditions. This is worse- no degree of 
approximation to the data uo, ul allows us to determine u(l ,y) to any degree of ap
proximation. Nothing short of perfect infonnation about Uo and u 1 suffices. 

About this sort of situation, Hadamard remarked, 

Strictly, mathematically speaking, we have seen (this is Holmgren'S theorem) that one set of 
Cauchy's data uO,ul corresponds (at most) to one solution of 

iPu a2u 
ax2 + ay2 =0. 

so that, ifthese quantities uO,ul were 'known', u would be detelUlined without any possible 

ambiguity. 
But, in any concrete application, 'known', of course, signifies "known with a certain 

approximation," all kind of errors being possible, provided their magnitude remains smaller 

than a certain quantity; and, on the other hand, we have seen that the mere replacing of the 
value zero for u 1 by the (however small) value (15) changes the solution not by very small 

but by very great quantities. Everything takes place, physically speaking, as if the knowledge 
of Cauchy's data would not detelUline the unknown function. (Hadamard [1922] 1952: 38). 

Courant and Hilbert ([1937] 1962: 227) took the condition that the solution of a 
problem depends continuously on the data as one of three conditions which must 
be satisfied for the problem to be considered "well-posed" (the other two being that a 
solution exist and that the solution be unique), and Hadamard, in subsequent works, 
followed suit (Hadamard 1964: 19-21). The point is not that there are no physical 
systems which exhibit discontinuous dependence on initia.1 conditions. Ra~ber: so
lutions to problems which are not well-posed are of no use In concrete apphcattons. 

Suppose a physical theory predicts the value of a physical quantity, given ~r
tain conditions. If this prediction is to be tested by a measurement of the quantIty 
in question, the experimenter must be able to produce the desired ~nditions or at 
least ascertain that they hold. This will be done, not exactly, but WIth some degree 
of error. This error does not invalidate the experiment so long as the value of the 
quantity to be measured changes by only a small amount when the experimental 
parameters vary slightly. I adopt terminology due to Laszlo 1'!s.za (~963: 1~9), and 
call the principle that mathematical solutions of problems ansmg In ~bysJCS m~st 
be insensitive to small changes in the data, in order to be of use for making quantita
tive predictions, the "principle of regularity." This principle is an important insight 
into the relationship between our mathematical models and the world that they are 
meant to represent. It should not be taken as an a priori prohibition against th~ ~p
pearance of discontinuous functions in physical theories; it merely serves to dIstin
guish the predictions of the theory which can be tested by measurement from those 
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which cannot. Even if natura facit saltum, the quantities about which we can make 
reJiable quantitative predictions will be found in the regions where Nature refrains 
from leaping. We may, indeed, be led by theoretical considerations to predict that 
some physical quantity varies discontinuously as a function of the other, and this 
prediction can be compared with experiment. In such a case, however, it is the qual
itative behavior of the system that is predicted; no attempt is made to make precise 
predictions of the value of the discontinuously varying quantity in the immediate 
neighborhood of the discontinuity. Even if discontinuous functions appear in the 
theory, the result of a calculation, in order to be of use to an experimenter, must be 
insensitive to small changes in the data. 

Given what has been said about computability and continuity, it should not be 
surprising that the solutionu(x,y) of the Laplace equation is not always a Grzegor
czyk-computable function whenever Uo and Ul are. Perhaps the best-known exam
ple of a differential equation with non-computable solutions for computable initial 
data is the three-dimensional wave equation (pour-EI and Richards 1981): 

a2u a2u a2u 1 a2u 
ax2 + ayZ + az2 = c2 at2 ' 

The wave equation also exhibits discontinuous dependence of the solutionon initial 
conditions, and the construction exploits this fact. 

Pour-EI and Richards (1983) have proven that, under certain mild side condi
tions, a linear partial differential equation preserves computability- that is, yields 
computable solutions for computable initial data- if and only if the solutiondepends 
continuously on the data. Thus, in the space of solutions of differential equations, we 
have an analog of Mazur's result that a function which maps computable sequences 
of reals onto computable sequences are continuous in the computable reals. Corre
sponding to an initial-value problem is a family of operators mapping initial data 
onto solutions at a later time t. If the equation is a linear one, the time-evolution 
operators will be linear operators. We have the strong result that linear operators 
which map computable functions onto computable functions are effectively uni
fonnly continuous in the data, and linear operators which are discontinuous map 
some computable function onto a non-computable function. 

These counter-examples violate the principle of regularity, and so are disquali
fied as experimentally verifiable predictions of the theory. When a differential equa
tion satisfies the principle of regularity, then, as the Pour-EI and Richards classifi
cation theorem shows, computability is preserved. 

The Pour-EI and Richards classification theorem applies, in its full generality, to 
any Banach space endowed with a computability structure satisfying the axioms:3 

Axiom 1 (Linear Fonns). Let {xn} and {Yn} be computable sequences in X, let 
{un.d and {~nk} be computable double sequences of real or complex numbers, and 
let d(n) be a recursive function. Then the sequence 

d(n) 

Sn = '\" (UnkXk + ~nkYk) 
go 
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is a computable sequence. 

Axiom 2 (Limits). Let {Xnk} be a computable double sequence inX such that {Xnk} 
converges to {Xn} as k -+ 00, effectively in k and n. Then {xn} is a computable se-

quence inX. 

Axiom 3 (Norms). If {Xn} is a computable sequence inX, then the norms {lIxnll} 
form a computable sequence of real numbers. 

Proposition 1a). (pour-EI and Richards) . Let A be a bounded, effectively deter
mined linear operator on a Banach space X with a computability structure satisfy
ing Axioms 1-3. Then A maps every computable sequence inX onto a computable 

sequence inX. 

b). Let A be a closed, unbounded linear operator on a Banach space X with a com
putability structure satisfying Axioms 1-3, which maps some computable basis se
quence e" onto a computable sequence {Aek}' Then there exists a computable u in 
the domain of A such thatAu is not computable. 

If we recall that a linear operator is continuous (moreover, effectively, uniformly 
so) everywhere on its domain if it is bounded, and discontinuous everywhere if it is 
unbounded, we see that the classification theorem is a close cousin to other results 
concerning the continuity of computable functions. 

It is easy to extend the notion of computability to a separable Hilbert space. 
One chooses an orthonormal basis which one wishes to take as a computable se
quence. A vector is computable if and only if its coefficients of expansion in terms 
of this basis are a computable sequence, and the expansion converges effectively; 
computable sequences are defined analogously. The notion of computability so de
fined satisfies the axioms for a computability structure on a Banach space, and the 
Pour-EI and Richards classification theorem applies. A closed linear operator which 
acts effectively on a computable basis sequence preserves computability (i.e. maps 
computable vectors onto computable vectors) if and only if it is bounded. This fact 
can be used to show that quantum-mechanical time-evolution according to an ef
fectively determined Hamiltonian is computable. 

Lemma Ie. If T is an effectively determined (bounded or unbounded) self-adjoint 
operator, and f is a bounded, Grzegorczyk-computable function, then f(T) is a 

computable operator. 

Corollary 1d. If H is an effectively determined Hamiltonian, the time-evolution 

operators 

depend effectively on t, h. . 
The Pour-EI and Richards classification theorem dictates that, whenever T IS an 

effectively determined unbounded, closed operator, there will be some computable 
state 'P such that T'P is a non-computable state. Many of the interesting operators 
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in quantum mechanics - such as position, momentum, and energy - are unbounded 
and closed. However, the vector H'P, where H is, for example, the Hamiltonian op
erator, has no immediate physical significance; it is quantities defined in terms of 
these vectors, such as expectation values, that are of concern to the physicist. And 
these expectation values are computable, so long as 'P is in the domain of the oper
ator: 

Proposition 2. If T is an effectively determined self-adjoint operator and 'P is a 
computable vector in the domain of T, then the expectation value ('P, T'P)/II'PW is 
a computable real number. 

One of the central results of the theory of Hilbert spaces is the Spectral Theorem. 
This theorem is the means by which the probabilistic predictions of quantum 
mechanics are generated, as it ensures that, for any self-adjoint linear operator A 
(which represents an "observable") and any vector 'P, there is a measure I-l~ on 
the Borel subsets of the real line which takes on valUj::s in [0,1]. For any Borel set 
Q ~ JR, 1-l~(Q) is interpreted as the probability that a measurement of the physical 
quantity corresponding to A on a system in state 'P will yield a result in Q. 

We now ask: is the probability p(x) = I-l~« -oo,x)) always a Grzegorczyk
computable function of x whenever 'P and A are, respectively, a computable 
vector and computable operator? The answer is, trivially: no, as p(x) may depend 
discontinuously on x, at the eigenvalues of A.6 E.g., take A to be oz, the spin 
operator in the z-direction for a spin-l h particle, and take 'P to be Iz; + > where 
Oz Iz; + >= 1 h Iz; + > Then we have 

(x) = {O, if x < 1 h 
P l,ifx ~ Ih 

This function is not Grzegorczyk-computable, because of the discontinuity at O. It 
does, however, take on computable values at computable points. This need not be 
the case. 

Proposition 3. There exists a computable, bounded, self-adjoint operator A, and a 
computable vector 'P, such that 1-l~(I) is a non-computable number, where I is the 
open unit interval (0, 1).7 

The Spectral Theorem, in the form invoked by physicists doing quantum mechanics, 
is not a constructively valid theorem. 

Is this an example of a non-computable, testable prediction from computable 
data? No, because, in the example given, 0 is an eigenvalue of the operator A, and 
the probability assigned to the singleton set 0 is non-zero. In fact, the spectrum of 
th~ o~erator in question is entirely contained in [0,1), so that 1-l~([O, 1)) = 1. The 
pnnclple of regularity is violated; the slightest change in one of the endpoints of 
the interval of measurement produces a large change in the probability predicted. 
This is not an accidental feature of the construction. 
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Proposition 4. If A is a computable self-adjoint operator, and [a, b) is an interval 
with computable endpoints containing no eigenvalues of the operator A, then the 
function 

cj>(X) = f.t~(x) 

is a Grzegorczyk-computable function on [a, b]. 

Each of the cases discussed above in which non-computability has been found to 
arise out of computability violates the principle of regularity. Furthermore, it can be 
shown, in each case, that when the principle of regularity is not violated, then the 
desired quantities can be calculated effectively from the data. There do not seem to 
be any regular predictions of quantum mechanics which are not computable, given 
computable data. 

If one reviews other results in computable analysis in which non-computability 
arises out of computability, one finds the same situation: in each case, non
computability arises out of some sort of discontinuity. One is tempted to general
ize, and conjecture that, in analysis, non-computability arises, in a natural way, out 
of computability only as a result of some sort of discontinuity. If so, then perhaps 
no realistic physical theory will produce non-computable predictions which satisfy 
the principle of regularity. Two notes of caution must be sounded in connection 
with this conjecture, however. First, many of the known results are concerned 
with linear problems, and, for linear operators, there is no middle ground between 
discontinuity everywhere and uniform effective continuity. A linear operator which 
is continuous at any point on its domain is unifonnJy effectively continuous. It is 
conceivable that there are non-linear partial differential equations whose solutions 
depend continuously on the data, but not effectively so, and such equations might 
map computable data onto non-computable solutions. Second, the evidence we 
have concerns known results, and perhaps the examples of non-computability 
which arise from discontinuity are simply the easiest to find. The Borel-Brouwer 
thesis seems to be used a heuristic guide in the pursuit of non-computability in 
analysis; this tends to lead to examples which violate regularity. 

The deterministic, linear dynamics of quantum mechanics leads, if it is taken to 
apply to all systems for all times, to seemingly unreal situations such as superposi
tions of dead and alive cats, and not to actual, definite events. This is the so-called 
"measurement problem" (though the problem exists for situations which are not or
dinarily construed as measurements). In response to the problem, it has been pro
posed that the dynamics be modified in a non-linear way which avoids such objec
tionable superpositions. Penrose (1989) has proposed that the solution of the mea
surement problem lies in a hypothetical "correct quantum gravity" (COG) which 
will not only account for the reduction of superpositions, but will account for our 
allegedly non-computable behavior by being a non-algorithmic theory. It has been 
conjectured, above, that non-computable predictions which satisfy the principle of 
regularity are to be found, if at all, in non-linear problems. Only non-linear opera
tors allow for some middle ground between uniform effective continuity and dis
continuity everywhere. If the laws of physics, at some fundamental level, are non-
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computable, then a non-linear emendation of quantum mechanics is a plausible lo
cation for this non-computability to occur. Computability in non-linear problems 
has been little investigated, chiefly because non-linear problems are much more dif
ficult to handle than linear ones. Pour-El and Richards close their book with the re
mark, "Non-linear analysis is a vast area, and its connections with recursion theory, 
at the time of this writing, remain largely untouched" (1989: 194). In 1994, they still 
remain largely untouched, but an interesting avenue for further investigations. 

ApPENDIX: DEFINITIONS 

I. a) A sequence {xn} of rationals or reals converges as n ~ 00 to a limit 
x if and only if for every mEN there exists kEN such that, for all 
n > k,x-xn < 2-m • 

b) A sequence {xn} of rationals or reals converges effectively as n ~ 00 to 
a limit x if and only if there is a recursive functiond: N ~ N such that, 
for all n > d(m),x-xn < 2-m• 

c) A double sequence {xn.d of rationals or reals converges as k ~ 00 to the 
sequence {xn }, effectively in k and n, if and only if there is a recursive 
functiond: N x N ~ N such that, for all k > d(n,m),xn -Xnk < 2-m • 

Suppose that an effective coding of the rationals by natural numbers is given, 
such as, e.g. 

Q(n) = 3tl (3tl (n)) - 3t2 (3tl (n)) 
3t2(n) + 1 

where 3tl and 3t2 are the left and right "unpacking" functions for some 
effective pairing function. E.g. "t(n,m) = 1 hen +m)(n + m + 1) +m, and 
"t(3tl (n), 3t2(n)) = n for all n E N. 

II. a) A sequence {qn} of rational numbers is a computable sequence of ra
tionals if and only if there is a recursive function d : N ~ N such that 
qn = Q(d(n)) for all n E N. 

b) A double sequence {qnk} of rational numbers is a computable double 
sequence of rationals if and only if there is a recursive function d: N x 
N ~ N such that 
qnk = Q(d(n,k)) for all n, kEN 

(And similarly for computable n-tuple sequences of rationals.) 

III. a) A real number x is a computable real number if and only if there is a 
computable sequence of rationals which converges effectively to x. 

b) A sequence {xn} of real numbers is a computable sequence if and only 
if there is a computable double sequence {qnk} of rational numbers 
which converges as k ~ 00 to {xn }, effectively in k and n. 
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IV. A functionF: lR -t lR is Grzegorczyk-computable if, and only if: 

i) For any computable sequence {xn}, {F(xn)} is a computable se
quence. 

ii) F is effectively uniformly continuous with respect to rational seg
ments. That is, there is a recursive function g(n, m, k) such that for 
all n,m,k EN and x,y E [Q(n),Q(m)], \x- y\ < 2-g(n,m,k) implies 

\F(x) -F(y) \ < 2-k. 

V. Let:J{ be a separable Hilbert space, {ek} an orthonormal basis for:J{ . 

a) A vector u E:J{ is computable with respect to {ek} iff there is a com
putable sequence {ak} of complex numbers such that the partial sums 

converge effectively to u as m -t 00, 

b) A sequence {un} in:J{ is computable with respect to {ek} iff there is a 
computable double sequence {ank} of complex numbers such that the 
double sequence 

converges to Un as m -t 00, effectively in nand m, 

VI. a) A linear operator A on:J{ is computable with respect to {ek} iff: 

i) {Aek} is a computable sequence. 

ii) A is bounded. 

b) A sequence {An} of linear operators on:J{ is a computable sequence 
with respect to {ek} iff, for every sequence {Ym} which is computable 
with respect to {ek},AnYm is a computable double sequence with re-

spectto {ek}' 

VII. Let:J{ be a Hilbert space, {ek} a basis for:J{ . A closed linear operator T on 
:J{ is effectively determined with respect to the basis {ek} iff: 

i) {Tek} is a computable sequence. 
ii) For all u E Dom(T), there exists a sequence {Uk} in the linear span 

of {ek} such that Uk -t u and TUk -t Tu as k -t 00, 

1. 

2. 

3. 
4. 
5. 
6. 

7. 
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NOTES 

Part of the research for this paper was carried out while the author held a Graduate 
Fellowship in the History of Science and Technology at the Dibner Institute for the 
History of Science and Technology, Cambridge, Massachusetts, USA. 
For billiard-ball computers, see Fredkin and To ffo Ii (1982). For quantum-mechanical 
computers, see Feynman (1986). 
See Appendix for definitions. 
This point has been raised by John Earman (1986: 119). 
See Hartley Rogers, Jr. (1967: 371) for the construction. 
As physicists do not always distinguish between the eigenvalues of an operator and 
other points in the spectrum of the operator, it is worth stressing that there is, for self
adjoint operators on a Hilbert space, a distinction between two classes of points in the 
spectrum: the point spectrum (eigenvalues), and the continuous spectrum. 
See Pour-El and Richards (1989: 133-142) for the construction. The operator in ques
tion is that constructed in the proof of the Eigenvector Theorem and the vector is eo 
of the same proof. 
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