Results for 'Meir Hemmo'

(not author) ( search as author name )
330 found
Order:
  1.  30
    Introduction to the Philosophy of Statistical Mechanics: Can Probability Explain the Arrow of Time in the Second Law of Thermodynamics? [REVIEW]Meir Hemmo Orly Shenker - 2011 - Philosophy Compass 6 (9):640-651.
    The arrow of time is a familiar phenomenon we all know from our experience: we remember the past but not the future and control the future but not the past. However, it takes an effort to keep records of the past, and to affect the future. For example, it would take an immense effort to unmix coffee and milk, although we easily mix them. Such time directed phenomena are subsumed under the Second Law of Thermodynamics. This law characterizes our experience (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Von Neumann’s Entropy Does Not Correspond to Thermodynamic Entropy.Meir Hemmo & Orly Shenker - 2006 - Philosophy of Science 73 (2):153-174.
    Von Neumann argued by means of a thought experiment involving measurements of spin observables that the quantum mechanical quantity is conceptually equivalent to thermodynamic entropy. We analyze Von Neumann's thought experiment and show that his argument fails. Over the past few years there has been a dispute in the literature regarding the Von Neumann entropy. It turns out that each contribution to this dispute addressed a different special case. In this paper we generalize the discussion and examine the full matrix (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  3.  52
    Does Neuroplasticity Support the Hypothesis of Multiple Realizability?Amber Maimon & Meir Hemmo - 2022 - Philosophy of Science 89 (1):107-127.
    It is commonly maintained that neuroplastic mechanisms in the brain provide empirical support for the hypothesis of multiple realizability. We show in various case studies that neuroplasticity stems from preexisting mechanisms and processes inherent in the neural structure of the brain. We argue that not only does neuroplasticity fail to provide empirical evidence of multiple realization, its inability to do so strengthens the mind-body identity theory. Finally, we argue that a recently proposed identity theory called Flat Physicalism can be enlisted (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  4. Flat Physicalism.Meir Hemmo & Orly Shenker - 2022 - Theoria 88 (4):743-764.
    This paper describes a version of type identity physicalism, which we call Flat Physicalism, and shows how it meets several objections often raised against identity theories. This identity theory is informed by recent results in the conceptual foundations of physics, and in particular clar- ifies the notion of ‘physical kinds’ in light of a conceptual analysis of the paradigmatic case of reducing thermody- namics to statistical mechanics. We show how Flat Physi- calism is compatible with the appearance of multiple realisation (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  5.  52
    Two Kinds of High-Level Probability.Meir Hemmo & Orly Shenker - 2019 - The Monist 102 (4):458-477.
    According to influential views the probabilities in classical statistical mechanics and other special sciences are objective chances, although the underlying mechanical theory is deterministic, since the deterministic low level is inadmissible or unavailable from the high level. Here two intuitions pull in opposite directions: One intuition is that if the world is deterministic, probability can only express subjective ignorance. The other intuition is that probability of high-level phenomena, especially thermodynamic ones, is dictated by the state of affairs in the world. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  6. The physics of implementing logic: Landauer's principle and the multiple-computations theorem.Meir Hemmo & Orly Shenker - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:90-105.
    This paper makes a novel linkage between the multiple-computations theorem in philosophy of mind and Landauer’s principle in physics. The multiple-computations theorem implies that certain physical systems implement simultaneously more than one computation. Landauer’s principle implies that the physical implementation of “logically irreversible” functions is accompanied by minimal entropy increase. We show that the multiple-computations theorem is incompatible with, or at least challenges, the universal validity of Landauer’s principle. To this end we provide accounts of both ideas in terms of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  7. Maxwell's Demon.Meir Hemmo & Orly Shenker - 2010 - Journal of Philosophy 107 (8):389-411.
    This paper proves that Maxwell's Demon is compatible with classical mechanics. In particular it shows how the cycle of operation - including measurement and erasure - can be carried out with no entropy cost, contrary to the Landauer-Bennett thesis (according to which memory erasure costs kln2 of entropy increase per bit). The Landauer-Bennet thesis is thus proven to be mistaken.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  8. Hempel’s Dilemma: Not Only for Physicalism.Erez Firt, Meir Hemmo & Orly Shenker - 2021 - International Studies in the Philosophy of Science 34 (2):101-129.
    According to the so-called Hempel’s Dilemma, the thesis of physicalism is either false or empty. Our intention in this paper is not to propose a solution to the Dilemma, but rather to argue as follows: to the extent that Hempel’s Dilemma applies to physicalism it equally applies to any theory that gives a deep-structure and changeable account of our experience or of high-level theories. In particular, we will show that it also applies to mind-body dualistic theories. The scope of Hempel’s (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  9.  59
    The emergence of macroscopic regularity.Meir Hemmo & Orly Shenker - 2015 - Mind and Society 14 (2):221-244.
    Special sciences (such as biology, psychology, economics) describe various regularities holding at some high macroscopic level. One of the central questions concerning these macroscopic regularities is how they are related to the laws of physics governing the underlying microscopic physical reality. In this paper we show how a macroscopic regularity may emerge from an underlying micro- scopic structure, and how the appearance of multiple realizability of the special sciences by physics comes about in a reductionist-physicalist framework. On this basis we (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  10. The Second Law of Thermodynamics and the Psychological Arrow of Time.Meir Hemmo & Orly Shenker - 2022 - British Journal for the Philosophy of Science 73 (1):85-107.
    Can the second law of thermodynamics explain our mental experience of the direction of time? According to an influential approach, the past hypothesis of universal low entropy also explains how the psychological arrow comes about. We argue that although this approach has many attractive features, it cannot explain the psychological arrow after all. In particular, we show that the past hypothesis is neither necessary nor sufficient to explain the psychological arrow on the basis of current physics. We propose two necessary (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  71
    Prediction and retrodiction in Boltzmann's approach to classical statistical mechanics.Meir Hemmo & Orly Shenker - unknown
    In this paper we address two problems in Boltzmann's approach to statistical mechanics. The first is the justification of the probabilistic predictions of the theory. And the second is the inadequacy of the theory's retrodictions.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Quantum, Probability, Logic: Itamar Pitowsky’s Work and Influence.Meir Hemmo & Orly Shenker (eds.) - 2020 - Springer.
    This volume provides a broad perspective on the state of the art in the philosophy and conceptual foundations of quantum mechanics. Its essays take their starting point in the work and influence of Itamar Pitowsky, who has greatly influenced our understanding of what is characteristically non-classical about quantum probabilities and quantum logic, and this serves as a vantage point from which they reflect on key ongoing debates in the field. Readers will find a definitive and multi-faceted description of the major (...)
    No categories
     
    Export citation  
     
    Bookmark  
  13.  87
    Probability and Typicality in Deterministic Physics.Meir Hemmo & Orly Shenker - 2015 - Erkenntnis 80 (3):575-586.
    In this paper we analyze the relation between the notion of typicality and the notion of probability and the related question of how the choice of measure in deterministic theories in physics may be justified. Recently it has been argued that although the notion of typicality is not a probabilistic notion, it plays a crucial role in underwriting probabilistic statements in classical statistical mechanics and in Bohm’s theory. We argue that even in theories with deterministic dynamics, like classical statistical mechanics (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  14.  38
    Probability in Physics.Yemima Ben-Menahem & Meir Hemmo (eds.) - 2012 - Springer.
    Emch, G.G., Liu, C.: The Logic of Thermostatistical Physics. Springer, Berlin/ Heidelberg (2002) 11. Frigg, R., Werndl, C.: Entropy – a guide for the perplexed. Forthcoming in: Beisbart, C., Hartmann, S. (eds.) Probabilities in Physics. Oxford  ...
    Direct download  
     
    Export citation  
     
    Bookmark   8 citations  
  15.  74
    A challenge to the second law of thermodynamics from cognitive science and vice versa.Meir Hemmo & Orly Shenker - 2021 - Synthese 199 (1-2):4897-4927.
    We show that the so-called Multiple-Computations Theorem in cognitive science and philosophy of mind challenges Landauer’s Principle in physics. Since the orthodox wisdom in statistical physics is that Landauer’s Principle is implied by, or is the mechanical equivalent of, the Second Law of thermodynamics, our argument shows that the Multiple-Computations Theorem challenges the universal validity of the Second Law of thermodynamics itself. We construct two examples of computations carried out by one and the same dynamical process with respect to which (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  16. The Road to Maxwell’s Demon.Orly Shenker & Meir Hemmo - 2012 - Cambridge University Press.
    No categories
     
    Export citation  
     
    Bookmark   37 citations  
  17. Quantum probability and many worlds.Meir Hemmo - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):333-350.
    We discuss the meaning of probabilities in the many worlds interpretation of quantum mechanics. We start by presenting very briefly the many worlds theory, how the problem of probability arises, and some unsuccessful attempts to solve it in the past. Then we criticize a recent attempt by Deutsch to derive the quantum mechanical probabilities from the nonprobabilistic parts of quantum mechanics and classical decision theory. We further argue that the Born probability does not make sense even as an additional probability (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  18.  70
    Quantum probability and many worlds.Meir Hemmo & Itamar Pitowsky - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):333-350.
  19. Quantum decoherence and the approach to equilibrium.Meir Hemmo & Orly Shenker - 2003 - Philosophy of Science 70 (2):330-358.
    We discuss a recent proposal by Albert (1994a; 1994b; 2000, ch. 7) to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the wave function by Ghirardi, Rimini, and Weber (1986). We propose an alternative way to explain thermodynamics within no-collapse interpretations of quantum mechanics. Our approach relies on the standard quantum mechanical models of environmental decoherence of open systems (e.g., Joos and Zeh 1985; Zurek and Paz 1994). This paper presents the two approaches (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  20. Explaining the Unobserved—Why Quantum Mechanics Ain’t Only About Information.Amit Hagar & Meir Hemmo - 2006 - Foundations of Physics 36 (9):1295-1234.
    A remarkable theorem by Clifton, Bub and Halvorson (2003) (CBH) characterizes quantum theory in terms of information--theoretic principles. According to Bub (2004, 2005) the philosophical significance of the theorem is that quantum theory should be regarded as a ``principle'' theory about (quantum) information rather than a ``constructive'' theory about the dynamics of quantum systems. Here we criticize Bub's principle approach arguing that if the mathematical formalism of quantum mechanics remains intact then there is no escape route from solving the measurement (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  21.  92
    Can Modal Interpretations of Quantum Mechanics Be Reconciled with Relativity?Joseph Berkovitz & Meir Hemmo - 2005 - Philosophy of Science 72 (5):789-801.
    Modal interpretations are hidden-variable, no-collapse interpretations of quantum mechanics that were designed to solve the measurement problem and reconcile this theory with relativity. Yet, as no-go theorems by Dickson and Clifton, Arntzenius and Myrvold demonstrate, current modal interpretations are incompatible with relativity. In the mainstream modal interpretations, properties of composite systems are generally unrelated to the properties of their subsystems. We propose holistic and relational interpretations of properties to explain this failure of property composition. Based on these interpretations, we consider (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  22. The Primacy of Geometry.Meir Hemmo & Amit Hagar - 2013 - Studies in the History and Philosophy of Modern Physics 44 (3):357-364.
    We argue that current constructive approaches to the special theory of relativity do not derive the geometrical Minkowski structure from the dynamics but rather assume it. We further argue that in current physics there can be no dynamical derivation of primitive geometrical notions such as length. By this we believe we continue an argument initiated by Einstein.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  23. Can We Explain Thermodynamics By Quantum Decoherence?Meir Hemmo & Orly Shenker - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):555-568.
    Can we explain the laws of thermodynamics, in particular the irreversible increase of entropy, from the underlying quantum mechanical dynamics? Attempts based on classical dynamics have all failed. Albert (1994a,b; 2000) proposed a way to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the wavefunction of Ghirardi, Rimini and Weber (1986). In this paper we propose an alternative way to explain thermodynamics within no-collapse interpretations of quantum mechanics. Our approach relies on the standard (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  24. Why the Many-Worlds Interpretation of quantum mechanics needs more than Hilbert space structure.Meir Hemmo & Orly Shenker - 2020 - In Rik Peels, Jeroen de Ridder & René van Woudenberg (eds.), Scientific Challenges to Common Sense Philosophy. New York: Routledge. pp. 61-70.
    McQueen and Vaidman argue that the Many Worlds Interpretation (MWI) of quantum mechanics provides local causal explanations of the outcomes of experiments in our experience that is due to the total effect of all the worlds together. We show that although the explanation is local in one world, it requires a causal influence that travels across different worlds. We further argue that in the MWI the local nature of our experience is not derivable from the Hilbert space structure, but has (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  25.  38
    Szilard’s Perpetuum Mobile.Meir Hemmo & Orly Shenker - 2011 - Philosophy of Science 78 (2):264-283.
    In a previous article, we have demonstrated by a general phase space argument that a Maxwellian Demon is compatible with statistical mechanics. In this article, we show how this idea can be put to work in the prevalent model of the Demon, namely, a particle-in-a-box, used, for example, by Szilard and Bennett. In the literature, this model is used in order to show that a Demon is incompatible with statistical mechanics, either classical or quantum. However, we show that a detailed (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  26.  84
    Modal interpretations, decoherence and measurements.Guido Bacciagaluppi & Meir Hemmo - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):239-277.
  27.  48
    Why Functionalism Is a Form of ‘Token-Dualism’.Meir Hemmo & Orly R. Shenker - unknown
    We present a novel reductive theory of type-identity physicalism, which is inspired by the foundations of statistical mechanics as a general theory of natural kinds. We show that all the claims mounted against type-identity physicalism in the literature don’t apply to Flat Physicalism, and moreover that this reductive theory solves many of the problems faced by the various non-reductive approaches including functionalism. In particular, we show that Flat Physicalism can account for the appearance of multiple realizability in the special sciences, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  28.  32
    Modal interpretations, decoherence and measurements.Guido Bacciagaluppi & Meir Hemmo - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):239-277.
  29. Probability and nonlocality in many minds interpretations of quantum mechanics.Meir Hemmo & Itamar Pitowsky - 2003 - British Journal for the Philosophy of Science 54 (2):225-243.
    We argue that certain types of many minds (and many worlds) interpretations of quantum mechanics, e.g. Lockwood ([1996a]), Deutsch ([1985]) do not provide a coherent interpretation of the quantum mechanical probabilistic algorithm. By contrast, in Albert and Loewer's ([1988]) version of the many minds interpretation, there is a coherent interpretation of the quantum mechanical probabilities. We consider Albert and Loewer's probability interpretation in the context of Bell-type and GHZ-type states and argue that it implies a certain (weak) form of nonlocality. (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  30.  50
    Quantum decoherence and the approach to equilibrium.Meir Hemmo & Orly Shenker - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (4):626-648.
    We discuss a recent proposal by Albert to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the wave function of Ghirardi, Rimini and Weber. We propose an alternative way to explain thermodynamics within no-collapse interpretations of quantum mechanics. Our approach relies on the standard quantum mechanical models of environmental decoherence of open systems, \eg Joos and Zeh and Zurek and Paz. This paper presents the two approaches and discusses their advantages. The problems they (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  31.  42
    Letter to the Editor.Meir Hemmo & Orly Shenker - 2015 - International Studies in the Philosophy of Science 29 (1):91-93.
    In our book The Road to Maxwell’s Demon (RMD) (Cambridge University Press 2012) we proposed a new outline for a reductive account of statistical mechanics in which thermodynamics is reduced to classical mechanics. In a recent review Valia Allori says that we misunderstood Boltzmann’s account of statistical mechanics with respect to two issues: (1) the nature of typicality considerations in Boltzmann’s explanation of the Second Law - and here she provides no argument whatsoever; and (2) Boltzmann’s notion of probability. As (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  32. Measures over initial conditions.Meir Hemmo & Orly Shenker - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 87--98.
    This paper concerns the meaning of the idea of typicality in classical statistical mechanics and how typicality is related to the notion of probability.
     
    Export citation  
     
    Bookmark   4 citations  
  33. The multiple-computations theorem and the physics of singling out a computation.Orly Shenker & Meir Hemmo - 2022 - The Monist 105 (1):175-193.
    The problem of multiple-computations discovered by Hilary Putnam presents a deep difficulty for functionalism (of all sorts, computational and causal). We describe in out- line why Putnam’s result, and likewise the more restricted result we call the Multiple- Computations Theorem, are in fact theorems of statistical mechanics. We show why the mere interaction of a computing system with its environment cannot single out a computation as the preferred one amongst the many computations implemented by the system. We explain why nonreductive (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  34.  21
    A Dilemma for Davidson’s Anomalous Monism.Meir Hemmo & Orly Shenker - unknown
    Is freedom compatible with determinism? Davidson famously rephrased this question by replacing “freedom” with “anomaly of the mental”, that is, failure to fall under a law. In order to prove that the anomaly of the mental is compatible with other conjectures he makes, in particular that: there is psycho-physical causation; “where there is causality, there must be a law” ; and the mental supervenes on the physical, Davidson proposed a model, that came to be known as anomalous monism. Accepting all (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  35.  62
    How to reconcile modal interpretations of quantum mechanics with relativity.Joseph Berkovitz & Meir Hemmo - unknown
    Recent no go theorems by Dickson and Clifton (1998), Arntzenius (1998) and Myrvold (2002) demonstrate that current modal interpretations are incompatible with relativity. In this paper we propose strategies for how to circumvent these theorems. We further show how these strategies can be developped into new modal interpretations in which the properties of systems are in general either holistic or relational. We explicitly write down an outline of dynamics for these properties which does not pick out a preferred foliation of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  36.  56
    Making Sense of Approximate Decoherence.Guido Bacciagaluppi & Meir Hemmo - 1994 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994:345 - 354.
    In realistic situations where a macroscopic system interacts with an external environment, decoherence of the quantum state, as derived in the decoherence approach, is only approximate. We argue that this can still give rise to facts, provided that during the decoherence process states that are, respectively, always close to eigenvectors of pointer position and record observable are correlated. We show in a model that this is always the case.
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  37.  21
    Is the mind in the brain in contemporary computational neuroscience?Meir Hemmo & Orly Shenker - 2023 - Studies in History and Philosophy of Science Part A 100 (C):64-80.
    According to contemporary computational neuroscience the mental is associated with computations implemented in the brain. We analyze in physical terms based on recent results in the foundations of statistical mechanics two well-known (independent) problems that arise for this approach: the problem of multiple-computations and the problem of multiple-realization. We show that within the computational theory of the mind the two problems are insoluble by the physics of the brain. We further show that attempts to solve the problems by the interactions (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  38.  21
    Observer Dependent Physicalism: A New Argument for Reductive Physicalism and for Scientific Realism.Meir Hemmo & Orly Shenker - 2023 - In Carl Posy & Yemima Ben-Menahem (eds.), Mathematical Knowledge, Objects and Applications: Essays in Memory of Mark Steiner. Springer. pp. 263-300.
    Reductive physicalism is a minority view in contemporary philosophy as well as in science, and therefore arguments for endorsing it often amount to arguments against the alternative views, in particular so-called non-reductive physicalism. In this paper we put forward a new argument for reductive physicalism, according to which it is the best account of the empirical data that we have. In particular, we show that: (a) a reductive physicalist theory of the mind forms an essential part of the very argument (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  39. Possible worlds in the modal interpretation.Meir Hemmo - 1996 - Philosophy of Science 63 (3):337.
    An outline for a modal interpretation in terms of possible worlds is presented. The so-called Schmidt histories are taken to correspond to the physically possible worlds. The decoherence function defined in the histories formulation of quantum theory is taken to prescribe a non-classical probability measure over the set of the possible worlds. This is shown to yield dynamics in the form of transition probabilities for occurrent events in each world. The role of the consistency condition is discussed.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  40.  70
    The preferred basis problem in the many-worlds interpretation of quantum mechanics: why decoherence does not solve it.Meir Hemmo & Orly Shenker - 2022 - Synthese 200 (3):1-25.
    We start by very briefly describing the measurement problem in quantum mechanics and its solution by the Many Worlds Interpretation. We then describe the preferred basis problem, and the role of decoherence in the MWI. We discuss a number of approaches to the preferred basis problem and argue that contrary to the received wisdom, decoherence by itself does not solve the problem. We address Wallace’s emergentist approach based on what he calls Dennett’s criterion, and we compare the logical structure of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  41. The Mathematical Representation of the Arrow of Time.Meir Hemmo & Orly Shenker - 2012 - Iyyun 61:167-192.
    This paper distinguishes between 3 meanings of reversal, all of which are mathematically equivalent in classical mechanics: velocity reversal, retrodiction, and time reversal. It then concludes that in order to have well defined velocities a primitive arrow of time must be included in every time slice. The paper briefly mentions that this arrow cannot come from the Second Law of thermodynamics, but this point is developed in more details elsewhere.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  42.  34
    Probability Zero in Bohm’s Theory.Meir Hemmo & Orly Shenker - 2013 - Philosophy of Science 80 (5):1148-1158.
    We describe two anomalies in Bohm’s quantum theory that shed light on the notion of probability zero in quantum mechanics. In one anomaly the preferred reference frame may be discovered.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Remarks on the direction of time in quantum mechanics.Meir Hemmo - 2003 - Philosophy of Science 70 (5):1458-1471.
    I argue that in the many worlds interpretation of quantum mechanics time has no fundamental direction. I further discuss a way to recover thermodynamics in this interpretation using decoherence theory (Zurek and Paz 1994). Albert's proposal to recover thermodynamics from the collapse theory of Ghirardi et al. (1986) is also considered.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  44.  32
    Introduction: Levels of Reality.Meir Hemmo & Orly Shenker - 2022 - The Monist 105 (2):147-155.
    We give a general background describing how the notion of levels of reality comes about in contemporary nonreductive approaches to the special sciences, what the notion of levels means in these approaches, its role in our scientific outlook of the world, and why it is important.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  45.  50
    A physicalist account of multiple realizability in the special sciences.Meir Hemmo & Orly R. Shenker - manuscript
    Multiple realizability seems to be empirically justified and provides the conceptual basis for the autonomy of the special sciences. But it is mysterious. In this talk I propose a new reductionist approach to the special sciences that removes the mystery: I explain why the special sciences kinds appear to be multiply realized although they are identical with physical kinds and in what sense the special sciences kinds and laws are autonomous although they are physical laws. This approach is based on (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  46.  64
    Levels of Reality in Science and Philosophy: Re-Examining the Multi-Level Structure of Reality.Meir Hemmo, Stavros Ioannidis, Orly Shenker & Gal Vishne (eds.) - 2022 - Springer.
    This book offers a unique perspective on one of the deepest questions about the world we live in: is reality multi-leveled, or can everything be reduced to some fundamental ‘flat’ level? This deep philosophical issue has widespread implications in philosophy, since it is fundamental to how we understand the world and the basic entities in it. Both the notion of ‘levels’ within science and their ontological implications are issues that are underexplored in the philosophical literature. The volume reconsiders the view (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  47. A hermetic complement to quantum mechaniscs.Shlom Giora & Shoham-Meir Hemmo - 1994 - Filosofia Oggi 17 (67):313-334.
    No categories
     
    Export citation  
     
    Bookmark  
  48. Maxwell’s Demon in Quantum Mechanics.Orly Shenker & Meir Hemmo - 2020 - Entropy 22 (3):269.
    Maxwell’s Demon is a thought experiment devised by J. C. Maxwell in 1867 in order to show that the Second Law of thermodynamics is not universal, since it has a counter-example. Since the Second Law is taken by many to provide an arrow of time, the threat to its universality threatens the account of temporal directionality as well. Various attempts to “exorcise” the Demon, by proving that it is impossible for one reason or another, have been made throughout the years, (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  49.  13
    Possible Worlds in the Modal Interpretation.Meir Hemmo - 1996 - Philosophy of Science 63 (5):S330-S337.
    An outline for a modal interpretation in terms of possible worlds is presented. The so-called Schmidt histories are taken to correspond to the physically possible worlds. The decoherence function defined in the histories formulation of quantum theory is taken to prescribe a non-classical probability measure over the set of the possible worlds. This is shown to yield dynamics in the form of transition probabilities for occurrent events in each world. The role of the consistency condition is discussed.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  50.  72
    The quantum mechanics of minds and worlds.Meir Hemmo - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (3):541-553.
1 — 50 / 330