This category needs an editor. We encourage you to help if you are qualified.
Volunteer, or read more about what this involves.
Related categories
Siblings:
8 found
Search inside:
(import / add options)   Sort by:
  1. Vieri Benci, Leon Horsten & Sylvia Wenmackers (2013). Non-Archimedean Probability. Milan Journal of Mathematics 81 (1):121-151.
    We propose an alternative approach to probability theory closely related to the framework of numerosity theory: non-Archimedean probability (NAP). In our approach, unlike in classical probability theory, all subsets of an infinite sample space are measurable and only the empty set gets assigned probability zero (in other words: the probability functions are regular). We use a non-Archimedean field as the range of the probability function. As a result, the property of countable additivity in Kolmogorov’s axiomatization of probability is replaced by (...)
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  2. Vieri Benci, Leon Horsten & Sylvia Wenmackers (2012). Axioms for Non-Archimedean Probability (NAP). In De Vuyst J. & Demey L. (eds.), Future Directions for Logic; Proceedings of PhDs in Logic III - Vol. 2 of IfColog Proceedings. College Publications.
    In this contribution, we focus on probabilistic problems with a denumerably or non-denumerably infinite number of possible outcomes. Kolmogorov (1933) provided an axiomatic basis for probability theory, presented as a part of measure theory, which is a branch of standard analysis or calculus. Since standard analysis does not allow for non-Archimedean quantities (i.e. infinitesimals), we may call Kolmogorov's approach "Archimedean probability theory". We show that allowing non-Archimedean probability values may have considerable epistemological advantages in the infinite case. The current paper (...)
    Remove from this list | Direct download  
     
    My bibliography  
     
    Export citation  
  3. Kenny Easwaran (2014). Regularity and Hyperreal Credences. Philosophical Review 123 (1):1-41.
    Many philosophers have become worried about the use of standard real numbers for the probability function that represents an agent's credences. They point out that real numbers can't capture the distinction between certain extremely unlikely events and genuinely impossible ones—they are both represented by credence 0, which violates a principle known as “regularity.” Following Skyrms 1980 and Lewis 1980, they recommend that we should instead use a much richer set of numbers, called the “hyperreals.” This essay argues that this popular (...)
    Remove from this list | Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  4. Matthew W. Parker, More Trouble for Regular Probabilitites.
    In standard probability theory, probability zero is not the same as impossibility. But many have suggested that only impossible events should have probability zero. This can be arranged if we allow infinitesimal probabilities, but infinitesimals do not solve all of the problems. We will see that regular probabilities are not invariant over rigid transformations, even for simple, bounded, countable, constructive, and disjoint sets. Hence, regular chances cannot be determined by space-time invariant physical laws, and regular credences cannot satisfy seemingly reasonable (...)
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  5. Alexander R. Pruss (2012). Infinite Lotteries, Perfectly Thin Darts and Infinitesimals. Thought 1 (2):81-89.
    One of the problems that Bayesian regularity, the thesis that all contingent propositions should be given probabilities strictly between zero and one, faces is the possibility of random processes that randomly and uniformly choose a number between zero and one. According to classical probability theory, the probability that such a process picks a particular number in the range is zero, but of course any number in the range can indeed be picked. There is a solution to this particular problem on (...)
    Remove from this list | Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  6. Sylvia Wenmackers (2012). Ultralarge and Infinite Lotteries. In B. Van Kerkhove, T. Libert, G. Vanpaemel & P. Marage (eds.), Logic, Philosophy and History of Science in Belgium II (Proceedings of the Young Researchers Days 2010). Koninklijke Vlaamse Academie van België voor Wetenschappen en Kunsten.
    By exploiting the parallels between large, yet finite lotteries on the one hand and countably infinite lotteries on the other, we gain insights in the foundations of probability theory as well as in epistemology. We solve the 'adding problems' that occur in these two contexts using a similar strategy, based on non-standard analysis.
    Remove from this list | Direct download  
     
    My bibliography  
     
    Export citation  
  7. Sylvia Wenmackers (2011). Philosophy of Probability: Foundations, Epistemology, and Computation. Dissertation, University of Groningen
    This dissertation is a contribution to formal and computational philosophy. -/- In the first part, we show that by exploiting the parallels between large, yet finite lotteries on the one hand and countably infinite lotteries on the other, we gain insights in the foundations of probability theory as well as in epistemology. Case 1: Infinite lotteries. We discuss how the concept of a fair finite lottery can best be extended to denumerably infinite lotteries. The solution boils down to the introduction (...)
    Remove from this list |
    Translate to English
    | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  8. Sylvia Wenmackers & Leon Horsten (2013). Fair Infinite Lotteries. Synthese 190 (1):37-61.
    This article discusses how the concept of a fair finite lottery can best be extended to denumerably infinite lotteries. Techniques and ideas from non-standard analysis are brought to bear on the problem.
    Remove from this list | Direct download (10 more)  
     
    My bibliography  
     
    Export citation