Bookmark and Share

Philosophy of Mathematics

Edited by Øystein Linnebo (Birkbeck College)
Assistant editor: Sam Roberts (Birkbeck College, University of Oslo)
Material to categorize found
Search inside:
(import / add options)   Order:
1 — 50 / 952
  1. Evandro Agazzi (1978). Non-contradiction et existence en mathématique. Logique Et Analyse 21 (84):459.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
    Translate
     
     
    Export citation  
     
    My bibliography  
  2. D. F. Almeida (2010). Are There Viable Connections Between Mathematics, Mathematical Proof and Democracy? Philosophy of Mathematics Education Journal 25.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography  
  3. Karl Egil Aubert (1982). The Role of Mathematics in the Exploration of Reality. Inquiry 25 (3):353 – 359.
    In his well?known paper from 1954, Herbert A. Simon sets out to demonstrate that it is possible, in principle, to make public predictions within the social sciences that will be confirmed by the events. However, Simon's proof by means of the Brouwer fixed?point theorem not only rests on an illegitimate use of continuous variables, it is also founded on the questionable assumption that facts ? even on the level of possibilities ? can be established by purely mathematical means. The ?proof? (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  4. Jeremy Avigad, By Dennis E. Hesseling.
    The early twentieth century was a lively time for the foundations of mathematics. This ensuing debates were, in large part, a reaction to the settheoretic and nonconstructive methods that had begun making their way into mathematical practice around the turn of the twentieth century. The controversy was exacerbated by the discovery that overly na¨ıve formulations of the fundamental principles governing the use of sets could result in contradictions. Many of the leading mathematicians of the day, including Hilbert, Henri Poincar´e, ´.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
    Translate
      Direct download  
     
    Export citation  
     
    My bibliography  
  5. Jeremy Avigad (2006). Mathematical Method and Proof. Synthese 153 (1):105 - 159.
    On a traditional view, the primary role of a mathematical proof is to warrant the truth of the resulting theorem. This view fails to explain why it is very often the case that a new proof of a theorem is deemed important. Three case studies from elementary arithmetic show, informally, that there are many criteria by which ordinary proofs are valued. I argue that at least some of these criteria depend on the methods of inference the proofs employ, and that (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (9 more)  
     
    Export citation  
     
    My bibliography   6 citations  
  6. Jeremy Avigad (1998). An Effective Proof That Open Sets Are Ramsey. Archive for Mathematical Logic 37 (4):235-240.
    Solovay has shown that if $\cal{O}$ is an open subset of $P(\omega)$ with code $S$ and no infinite set avoids $\cal{O}$ , then there is an infinite set hyperarithmetic in $S$ that lands in $\cal{O}$ . We provide a direct proof of this theorem that is easily formalizable in $ATR_0$.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (7 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  7. Jeremy Avigad, Kevin Donnelly, David Gray & Paul Raff, A Formally Verified Proof of the Prime Number Theorem.
    The prime number theorem, established by Hadamard and de la Vallée Poussin independently in 1896, asserts that the density of primes in the positive integers is asymptotic to 1/ln x. Whereas their proofs made serious use of the methods of complex analysis, elementary proofs were provided by Selberg and Erdos in 1948. We describe a formally verified version of Selberg's proof, obtained using the Isabelle proof assistant.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    My bibliography   2 citations  
  8. Jeremy Avigad & Harvey Friedman, Combining Decision Procedures for the Reals.
    We address the general problem of determining the validity of boolean combinations of equalities and inequalities between real-valued expressions. In particular, we consider methods of establishing such assertions using only restricted forms of distributivity. At the same time, we explore ways in which “local'’ decision or heuristic procedures for fragments of the theory of the reals can be amalgamated into global ones. Let $Tadd[QQ]$ be the first-order theory of the real numbers in the language with symbols $0, 1, +, -.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  9. Arnon Avron, Safety Signatures for First-Order Languages and Their Applications.
    In several areas of Mathematical Logic and Computer Science one would ideally like to use the set F orm(L) of all formulas of some first-order language L for some goal, but this cannot be done safely. In such a case it is necessary to select a subset of F orm(L) that can safely be used. Three main examples of this phenomenon are: • The main principle of naive set theory is the comprehension schema: ∃Z(∀x.x ∈ Z ⇔ A).
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
    Translate
     
     
    Export citation  
     
    My bibliography  
  10. L. K. B. (1957). Physics and Metaphysics of Music and Essays on the Philosophy of Mathematics. Review of Metaphysics 11 (2):352-352.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    My bibliography  
  11. Jeff Babb (2005). Mathematical Concepts and Proofs From Nicole Oresme. Science and Education 14 (3-5):443-456.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    My bibliography  
  12. John Bacon (1982). History of Logic. International Philosophical Quarterly 22 (1):106-107.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  13. Alain Badiou (1970). Le Concept de Modèle Introduction À Une Épistémologie Matérialiste des Mathématiques. --. F. Maspero.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
    Translate
     
     
    Export citation  
     
    My bibliography  
  14. Alain Badiou (1969). Le Concept de Mod Ele, Introduction a Une Épistémologie Matérialiste des Mathématiques. F. Maspero.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
    Translate
     
     
    Export citation  
     
    My bibliography   1 citation  
  15. Sidney C. Bailin (1985). An Analysis of Finitism and the Justification of Set Theory.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography  
  16. Alan Baker (2002). Maximizing Principles and Mathematical Methodology. Logique Et Analyse 45.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography  
  17. Alan Baker (2002). The Foundations of Mathematics in the Theory of Sets. Australasian Journal of Philosophy 80 (4):533-534.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    My bibliography  
  18. Mark Balaguer, Elaine Landry, Sorin Bangu & Christopher Pincock (2013). Structures, Fictions, and the Explanatory Epistemology of Mathematics in Science. Metascience 22 (2):247-273.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    My bibliography   1 citation  
  19. Sorin Bangu (2012). Later Wittgenstein's Philosophy of Mathematics. In J. Feiser & B. Dowden (eds.), Internet Encyclopedia of Philosophy.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    My bibliography  
  20. Sorin Bangu (2012). Wynn’s Experiments and the Later Wittgenstein’s Philosophy of Mathematics. Iyyun 61:219-240.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography  
  21. Sorin Bangu (2009). Representation and Productive Ambiguity in Mathematics and the Sciences. [REVIEW] Isis: A Journal of the History of Science 100:137-139.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    My bibliography  
  22. Sorin Bangu (2009). Understanding Thermodynamic Singularities: Phase Transitions, Data, and Phenomena. Philosophy of Science 76 (4):488-505.
    According to standard (quantum) statistical mechanics, the phenomenon of a phase transition, as described in classical thermodynamics, cannot be derived unless one assumes that the system under study is infinite. This is naturally puzzling since real systems are composed of a finite number of particles; consequently, a well‐known reaction to this problem was to urge that the thermodynamic definition of phase transitions (in terms of singularities) should not be “taken seriously.” This article takes singularities seriously and analyzes their role by (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  23. Sorin Bangu (2006). Pythagorean Heuristic in Physics. Perspectives on Science 14 (4):387-416.
    : Some of the great physicists' belief in the existence of a connection between the aesthetical features of a theory (such as beauty and simplicity) and its truth is still one of the most intriguing issues in the aesthetics of science. In this paper I explore the philosophical credibility of a version of this thesis, focusing on the connection between the mathematical beauty and simplicity of a theory and its truth. I discuss a heuristic interpretation of this thesis, attempting to (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  24. Sam Baron (2013). Chris Pincock , Mathematics and Scientific Representation . Reviewed By. Philosophy in Review 33 (1):63-66.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  25. Neil Barton (forthcoming). Richness and Reflection. Philosophia Mathematica:nkv036.
    A pervasive thought in contemporary philosophy of mathematics is that in order to justify reflection principles, one must hold universism: the view that there is a single universe of pure sets. I challenge this kind of reasoning by contrasting universism with a Zermelian form of multiversism. I argue that if extant justifications of reflection principles using notions of richness are acceptable for the universist, then the Zermelian can use similar justifications. However, I note that for some forms of richness argument, (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (3 more)  
     
    Export citation  
     
    My bibliography  
  26. Karl Bernard (1990). Genealogical Mathematics. Monograph Collection (Matt - Pseudo).
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography  
  27. Jean-Yves Beziau (1996). Identity, Structure and Logic. Bulletin of the Section of Logic 25:89-9.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    My bibliography  
  28. S. M. Bhave (2001). Vyapti and Sets. Indian Philosophical Quarterly 28 (4):541-548.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography  
  29. Manuel Bilsky (1963). Patterns of Argument. New York, Holt, Rinehart and Winston.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography  
  30. Stephen Binns (2006). Small Π0 1 Classes. Archive for Mathematical Logic 45 (4):393-410.
    The property of smallness for Π0 1 classes is introduced and is investigated with respect to Medvedev and Muchnik degree. It is shown that the property of containing a small Π0 1 class depends only on the Muchnik degree of a Π0 1 class. A comparison is made with the idea of thinness for Π0 1 classesmsthm.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  31. Max Black (1933). The Nature of Mathematics a Critical Survey. K. Paul, Trench, Trubner & Co., Ltd. Harcourt, Brac and Company.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography  
  32. Eric Blaire (2002). Refocusing Maths Essays. Monograph Collection (Matt - Pseudo).
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography  
  33. Patricia Blanchette (2016). The Breadth of the Paradox. Philosophia Mathematica 24 (1):30-49.
    This essay examines Frege's reaction to Russell's Paradox and his views about the grounding of existence claims in mathematics. It is argued that Frege's strict requirements on existential proofs would rule out the attempt to ground arithmetic in. It is hoped that this discussion will help to clarify the ways in which Frege's position is both coherent and significantly different from the neo-logicist position on the issues of: what's required for proofs of existence; the connection between models, consistency, and existence; (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  34. Patricia Blanchette (2003). Critical Studies / Book Reviews. [REVIEW] Philosophia Mathematica 11 (3):358-362.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (2 more)  
     
    Export citation  
     
    My bibliography  
  35. U. Blau (1998). Ein Platonistisches Argument Für Cantors Kontinuumshypothese. Dialectica 52 (3):175–202.
    Let k be the number of all pure sets, und let K be the number of all pure classes. The Platonist, assuming that the class \V of all pure sets cannot be enlarged by any formal means, will come to the conclusion that cardinalities between k und K are conceptually impossible. So the Continuum Hypothesis is true on class level. And if this feature of \V is reflected by all infinite sets \Va, the General Continuum Hypothesis is true on set (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (6 more)  
     
    Export citation  
     
    My bibliography  
  36. Albert Taylor Bledsoe (1873). The Philosophy of Mathematics with Special Reference to the Elements of Geometry and the Infinitesimal Method. J. B. Lippincott & Co.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography   1 citation  
  37. Ethan D. Bloch (2000). Proofs and Fundamentals: A First Course in Abstract Mathematics. Birkhäuser.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography  
  38. John William Blyth (1963). Class Logic. New York, Harcourt, Brace & World.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography  
  39. Joseph M. Bochenski (1959). A Precis of Mathematical Logic. Dordrecht, Holland, D. Reidel Pub. Co..
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    My bibliography   1 citation  
  40. Joseph M. Bochenski (1948). Précis De Logique Mathématique. Bussum, Pays-Bas, F. G. Kroonder.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    My bibliography   1 citation  
  41. Marcel Bodea (2001). On The Infinite / Sur L’Infini. Studia Philosophica 1.
    The conception of intuition in mathematics is prominent in early twentieth-century work on foundations of mathematics. The conception of mathematical intuition is partly based on Hilbert’s ideas about the methods of proof theory, a conception of intuitive evidence closer to the finitary method of Hilbert. Hilbert claimed some kind of evidence for finitist mathematics. Hilbert claimed intuitive evidence for individual instances of induction where the predicates involved are of the right kind, in practice primitive recursive. The objects of such intuition (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography  
  42. R. Bolling & I. Grattan-Guinness (1995). Das Fotoalbum Fur Weierstrass. A Photo Album for Weierstrass. Annals of Science 52 (5):527-527.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography  
  43. Izabela Bondecka-Krzykowska (1999). Dowody komputerowe a status epistemologiczny twierdzeń matematyki. Filozofia Nauki 3.
    The article is an attempt at collecting and systematising views on the role and place of computers in mathematics, in particular the views on the consequences of using computers in proving mathematical theorems. The following issues are considered in the article: the problem connected with the concept of mathematical proof and its features; the attempts at answering the question whether computer proofs are genuine mathematical proofs; the problems with methods of checking the correctness of classical and computer-assisted proofs; and finally (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
    Translate
     
     
    Export citation  
     
    My bibliography  
  44. Daniel Bonevac (1984). Mathematics and Metalogic. The Monist 67 (1):56-71.
    In this paper I shall attempt to outline a nominalistic theory of mathematical truth. I call my theory nominalistic because it avoids a real (see [4]) ontological commitment to abstract entities. Traditionally, nominalists have found it difficult to justify any reference to infinite collections in mathematics. Even those who have tried to do so have typically restricted themselves to predicative and, thus, denumerable realms. I Indeed, many have linked impredicative definitions to platonism; nominalists have tended to agree with Weyl that (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (5 more)  
     
    Export citation  
     
    My bibliography  
  45. Jacqueline Boniface (2005). Leopold Kronecker's Conception of the Foundations of Mathematics. Philosophia Scientiae 9 (S2):143-156.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (4 more)  
     
    Export citation  
     
    My bibliography  
  46. Mary Everest Boole (1897). The Mathematical Psychology of Gratry and Boole, Translated From the Language of the Higher Calculus Into That of Elementary Geometry.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
     
    Export citation  
     
    My bibliography  
  47. George Boolos (1994). Gödel's Second Incompleteness Theorem Explained in Words of One Syllable. Mind 103 (409):1-3.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download (8 more)  
     
    Export citation  
     
    My bibliography   3 citations  
  48. George Boolos (1993). Whence the Contradiction? Aristotelian Society Supplementary Volume 67:211--233.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list  
    Translate
     
     
    Export citation  
     
    My bibliography   5 citations  
  49. Alfons Borgers (1948). Development of the Notion of Set and of the Axioms for Sets. Synthese 7 (6-A):374 - 390.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    My bibliography  
  50. Nick Bostrom (2011). Infinite Ethics. Analysis and Metaphysics 10:9-59.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list   Direct download  
     
    Export citation  
     
    My bibliography   3 citations  
1 — 50 / 952