Bookmark and Share

Philosophy of Mathematics

Edited by Øystein Linnebo (Birkbeck College)
Assistant editor: Sam Roberts (Birkbeck College, University of Oslo)
Material to categorize found
Search inside:
(import / add options)   Sort by:
1 — 50 / 70
  1. Oscar João Abdounur, Vecchio Junior & Jacintho Del (2013). Sobre os números transfinitos. Scientiae Studia 11 (2):417-426.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  2. Amir Alexander (1995). The Imperialist Space of Elizabethan Mathematics. Studies in History and Philosophy of Science Part A 26 (4):559-591.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  3. O. Bradley Bassler (1997). The Principles of Mathematics Revisited. Review of Metaphysics 51 (2):424-425.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  4. Jose Benardete (1985). Mathematics and Philosophy. Review of Metaphysics 38 (3):674-676.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  5. Sandy Berkovski (2002). Surprising User-Friendliness. Logique Et Analyse 45 (179-180):283-297.
    Some theorists are bewildered by the effectiveness of mathematical concepts. For example, Steiner attempts to show that there can be no rational explanation of mathematical applicability in physics. Others (notably Penrose) are concerned primarily with the unexpected effectiveness within mathematics. Both views consist of two parts: a puzzle and a positive solution. I defend their paradoxical parts against the sceptics who do not believe that the very problem of effectiveness is a genuine one. Utilising Horwich’s theory of surprise, I argue (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download  
     
    My bibliography  
     
    Export citation  
  6. Izabela Bondecka-Krzykowska & Roman Murawski (2008). Structuralism and Category Theory in the Contemporary Philosophy of Mathematics. Logique Et Analyse 51 (204):365.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  7. Ross T. Brady (2012). The Consistency of Arithmetic, Based on a Logic of Meaning Containment. Logique Et Analyse 55 (219).
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  8. J. P. Burgess & P. Ernest (1997). Philip J. Davis, Reuben Hersh, and Elena Anne Marchisotto. The Mathematical Experience Study Guide and The Companion Guide to the Mathematical Experience Study Edition. [REVIEW] Philosophia Mathematica 5:175-188.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  9. Carlo Cellucci (2007). La Filosofia della Matematica del Novecento. Laterza.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  10. Stefania Centrone (2014). Mirja Hartimo Ed. Phenomenology and Mathematics. Phaenomenologia; 195. Dordrecht: Springer, 2010. ISBN 978-90-481-3728-2 (Hbk); 978-90-481-3728-2 (E-Book); 978-94-007-3196-7 (Pbk). Pp. Xxv + 222. [REVIEW] Philosophia Mathematica 22 (1):126-129.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  11. M. Davis (1998). Review of Dawson [1997]. [REVIEW] Philosophia Mathematica 3 (6).
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  12. Igor Douven (2011). Similarity After Goodman. Review of Philosophy and Psychology 2 (1):61-75.
    In a famous critique, Goodman dismissed similarity as a slippery and both philosophically and scientifically useless notion. We revisit his critique in the light of important recent work on similarity in psychology and cognitive science. Specifically, we use Tversky’s influential set-theoretic account of similarity as well as Gärdenfors’s more recent resuscitation of the geometrical account to show that, while Goodman’s critique contained valuable insights, it does not warrant a dismissal of similarity.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (8 more)  
     
    My bibliography  
     
    Export citation  
  13. Hartry Field (1994). Are Our Logical and Mathematical Concepts Highly Indeterminate? Midwest Studies in Philosophy 19 (1):391-429.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (5 more)  
     
    My bibliography  
     
    Export citation  
  14. Thomas Forster (forthcoming). Mathematical Objects Arising From Equivalence Relations and Their Implementation in Quine's NF. Philosophia Mathematica:nku005.
    Many mathematical objects arise from equivalence classes and invite implementation as those classes. Set-existence principles that would enable this are incompatible with ZFC's unrestricted aussonderung but there are set theories (e.g., NF and Church's CUS) which admit more instances than does ZF. NF provides equivalence classes for stratified relations only. Church's construction provides equivalence classes for “low” sets, and thus, for example, a set of all (low) ordinals. However, that set has an ordinal in turn which is not a member (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  15. Joachim Frans & Erik Weber (2014). Mechanistic Explanation and Explanatory Proofs in Mathematics. Philosophia Mathematica 22 (2):231-248.
    Although there is a consensus among philosophers of mathematics and mathematicians that mathematical explanations exist, only a few authors have proposed accounts of explanation in mathematics. These accounts fit into the unificationist or top-down approach to explanation. We argue that these models can be complemented by a bottom-up approach to explanation in mathematics. We introduce the mechanistic model of explanation in science and discuss the possibility of using this model in mathematics, arguing that using it does not presuppose a Platonist (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  16. Greg Frost-Arnold (2013). Carnap, Tarski, and Quine at Harvard: Conversations on Logic, Mathematics, and Science. Open Court Press.
    During the academic year 1940-1941, several giants of analytic philosophy congregated at Harvard, holding regular private meetings, with Carnap, Tarski, and Quine. Carnap, Tarski, and Quine at Harvard allows the reader to act as a fly on the wall for their conversations. Carnap took detailed notes during his year at Harvard. This book includes both a German transcription of these shorthand notes and an English translation in the appendix section. Carnap’s notes cover a wide range of topics, but surprisingly, the (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  17. Mihai Ganea (2014). Finitistic Arithmetic and Classical Logic. Philosophia Mathematica 22 (2):167-197.
    It can be argued that only the equational theories of some sub-elementary function algebras are finitistic or intuitive according to a certain interpretation of Hilbert's conception of intuition. The purpose of this paper is to investigate the relation of those restricted forms of equational reasoning to classical quantifier logic in arithmetic. The conclusion reached is that Edward Nelson's ‘predicative arithmetic’ program, which makes essential use of classical quantifier logic, cannot be justified finitistically and thus requires a different philosophical foundation, possibly (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  18. Intuitionism As Generalization (1990). Fred Richman New Mexico State University. Philosophia Mathematica 5 (124):128.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download  
     
    My bibliography  
     
    Export citation  
  19. N. Griffin (1995). Alejandro R. Garciadiego, Bertrand Russell and the Origins of the Set-theoretic'Paradoxes'. Philosophia Mathematica 3:304-304.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  20. E. R. Grosholz (2004). Lorenzo Magnani. Philosophy and Geometry: Theoretical and Historical Issues. Philosophia Mathematica 12 (1):79-80.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download  
     
    My bibliography  
     
    Export citation  
  21. Marie Grossi, Montgomery Link, Katalin Makkai & Charles Parsons (1998). A Bibliography of Hao Wang. Philosophia Mathematica 6 (1):25-38.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  22. G. E. R. Haddock (2003). Anastasio aleman. Logica, matematicas Y realidad. Philosophia Mathematica 11 (1):108-119.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  23. D. M. Hausman (2003). E. Roy Weintraub. How Economics Became a Mathematical Science. Philosophia Mathematica 11 (3):354-357.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  24. David Hilbert (1996). On the Concept of Number. In William Bragg Ewald (ed.), From Kant to Hilbert: A Source Book in the Foundations of Mathematics. Oxford University Press. 2--1089.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  25. Carlo Ierna (2014). Burt C. Hopkins. The Origin of the Logic of Symbolic Mathematics: Edmund Husserl and Jacob Klein. Studies in Continental Thought. Bloomington: University of Indiana Press, 2011. ISBN 978-0-253-35671-0 (Hbk). Pp. Xxxi + 559. [REVIEW] Philosophia Mathematica 22 (2):249-262.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  26. A. D. Irvine (1995). Bertrand Russell, Philosophical Papers 1896-99. Philosophia Mathematica 3:301-301.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  27. A. D. Irvine (1995). John Allen Paulos, Beyond Numeracy. Philosophia Mathematica 3:307-307.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  28. A. D. Irvine (1995). Kurt Goedel, Collected Works. Volumes I and II. Philosophia Mathematica 3:299-299.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  29. Andrew David Irvine (2014). Mark Colyvan. An Introduction to the Philosophy of Mathematics. Cambridge: Cambridge University Press, 2012. ISBN 978-0-521-82602-0 (Hbk); 978-0-521-53341-6 (Pbk). Pp. Ix + 188. [REVIEW] Philosophia Mathematica 22 (1):124-125.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  30. J. Kim (2010). Yi on 2. Philosophia Mathematica 18 (3):329-336.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
    Translate to English
    | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  31. Ernst Kleinert (2012). Studien Zur Mathematik Und Philosophie. Leipziger Universitätsverlag.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  32. G. Landini (2014). Gregory Landini. Zermelo and Russell's Paradox: Is There a Universal Set? Philosophia Mathematica 22 (1):142-142.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  33. André Lebel (2014). Jean-Michel Salanskis. Philosophie des Mathématiques. Problèmes & Controverses. Paris: Vrin, 2008. ISBN 978-2-7116-1988-7. Pp. 304. [REVIEW] Philosophia Mathematica 22 (2):262-270.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  34. Renren Liu (2010). Duo Zhi Luo Ji Han Shu Jie Gou Li Lun Yan Jiu. Ke Xue Chu Ban She.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  35. Minxia Luo (2010). Fan Luo Ji Xue Yu Gou Li Lun. Ke Xue Chu Ban She.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  36. Alex Miller (ed.) (2013). Logic, Language and Mathematics: Essays for Crispin Wright. Oxford University Press.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  37. M. M. Muntersbjorn (2003). Meir Buzaglo. The Logic of Concept Expansion. Philosophia Mathematica 11 (3):341-348.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  38. Gianluigi Oliveri (forthcoming). Book Review.'I Fondamenti della Matematica nel Logicismo di Bertrand Russell'. Stefano Donati. Firenze (Firenze Atheneum). 2003. ISBN: 88-7255-204-4. 988 pages.€ 39.00. [REVIEW] Philosophia Mathematica.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
    Translate to English
    |
     
    My bibliography  
     
    Export citation  
  39. Roland Omnès (2011). Wigner's “Unreasonable Effectiveness of Mathematics”, Revisited. Foundations of Physics 41 (11):1729-1739.
    A famous essay by Wigner is reexamined in view of more recent developments around its topic, together with some remarks on the metaphysical character of its main question about mathematics and natural sciences.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  40. C. Parsons (1996). Jean Dieudonne. Mathematics-The Music of Reason. Philosophia Mathematica 4:190-195.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  41. F. Pataut (2004). Michael Potter. Reason's Nearest Kin: Philosophies of Arithmetic From Kant to Carnap. Philosophia Mathematica 12 (3):268-277.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  42. Christopher Pincock (2005). Torsten Wilholt, Zahl Und Wirklichkeit: Eine Philosophische Untersuchung Über Die Anwendbarkeit der Mathematik [Number and Reality: A Philosophical Investigation of the Applicability of Mathematics]. Paderborn: Mentis, 2004. Pp. 309. ISBN 3-89785-368-X. [REVIEW] Philosophia Mathematica 13 (3):329-337.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
    Translate to English
    | Direct download  
     
    My bibliography  
     
    Export citation  
  43. Arkady Plotnitsky (2011). On the Reasonable and Unreasonable Effectiveness of Mathematics in Classical and Quantum Physics. Foundations of Physics 41 (3):466-491.
    The point of departure for this article is Werner Heisenberg’s remark, made in 1929: “It is not surprising that our language [or conceptuality] should be incapable of describing processes occurring within atoms, for … it was invented to describe the experiences of daily life, and these consist only of processes involving exceedingly large numbers of atoms. … Fortunately, mathematics is not subject to this limitation, and it has been possible to invent a mathematical scheme—the quantum theory [quantum mechanics]—which seems entirely (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  44. Stephen Pollard (2014). Reuben Hersh. Experiencing Mathematics: What Do We Do, When We Do Mathematics?. Providence, Rhode Island: American Mathematical Society, 2014. ISBN 978-0-8218-9420-0. Pp. Xvii + 291. [REVIEW] Philosophia Mathematica 22 (2):271-274.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download (4 more)  
     
    My bibliography  
     
    Export citation  
  45. Marie La Palme Reyes, John Macnamara, Gonzalo E. Reyes & Houman Zolfaghari (1994). The Non-Boolean Logic of Natural Language Negation. Philosophia Mathematica 2 (1):45-68.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download  
     
    My bibliography  
     
    Export citation  
  46. F. Richman (1997). Christopher Ormell. Some Criteria for Sets in Mathematics. Philosophia Mathematica 5:92-96.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  47. A. Riskin (1997). Jen Hoeyrup, In Measure, Number, and Weight. Philosophia Mathematica 5:276-277.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  48. S. Shapiro & G. Svensson (1996). Special Issue Of. Philosophia Mathematica 3 (4).
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  49. Barry Smith (1976). Historicity, Value and Mathematics. In. In A. T. Tymieniecka (ed.), Ingardeniana. 219--239.
    At the beginning of the present century, a series of paradoxes were discovered within mathematics which suggested a fundamental unclarity in traditional mathemati­cal methods. These methods rested on the assumption of a realm of mathematical idealities existing independently of our thinking activity, and in order to arrive at a firmly grounded mathematics different attempts were made to formulate a conception of mathematical objects as purely human constructions. It was, however, realised that such formulations necessarily result in a mathematics which lacks (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list | Direct download  
     
    My bibliography  
     
    Export citation  
  50. M. Steiner (1995). Shlomo Sternberg, Group Theory and Physics. Philosophia Mathematica 3:313-313.
    Select appropriate categories:

    Or:

    Select a category by name

    Epistemology of Mathematics
     Apriority in Mathematics
     Mathematics and the Causal Theory of Knowledge
     Mathematical Intuition
     Mathematical Proof
     Revisability in Mathematics
     Visualization in Mathematics
     Phenomenology of Mathematics
     Mathematical Methodology
     Nondeductive Methods in Mathematics
     Epistemology of Mathematics, Misc
    Ontology of Mathematics
     Mathematical Fictionalism
     Mathematical Nominalism
     Mathematical Platonism
     Mathematical Psychologism
     Mathematical Structuralism
     Mathematical Neo-Fregeanism
     Indeterminacy in Mathematics
     Indispensability Arguments in Mathematics
     Numbers
     The Nature of Sets
    Mathematical Truth
     Analyticity in Mathematics
     Axiomatic Truth
     Objectivity Of Mathematics
     Mathematical Truth, Misc
    Set Theory
     The Nature of Sets
     Axioms of Set Theory
     Cardinals and Ordinals
     Set Theory as a Foundation
    Areas of Mathematics
     Algebra
     Analysis
     Category Theory
     Geometry
     Logic and Phil of Logic
     Number Theory
     Set Theory
     Topology
     Areas of Mathematics, Misc
    Theories of Mathematics
     Logicism in Mathematics
     Formalism in Mathematics
     Intuitionism and Constructivism
     Predicativism in Mathematics
     Mathematical Naturalism
     Mathematical Finitism
     Theories of Mathematics, Misc
    History: Philosophy of MathematicsPhil of Mathematics, Miscellaneous
     Explanation in Mathematics
     The Infinite
     The Application of Mathematics
     History of Mathematics
     Mathematical Practice
     Phil of Mathematics, General Works
     Mathematical Explanation
     Phil of Mathematics, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
1 — 50 / 70