Bookmark and Share

Philosophy of Physical Science

Edited by Hans Halvorson (Princeton University)
Assistant editor: Joshua Luczak (University of Western Ontario)
Material to categorize found
Search inside:
(import / add options)   Sort by:
  1. Peter Achinstein (1990). Hypotheses, Probability, and Waves. British Journal for the Philosophy of Science 41 (1):73-102.
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Time
     Space and Time, Misc
    Remove from this list | Direct download (8 more)  
     
    My bibliography  
     
    Export citation  
  2. Eolo Di Casola, Stefano Liberati & Sebastiano Sonego (forthcoming). Between Quantum and Classical Gravity: Is There a Mesoscopic Spacetime? Foundations of Physics:1-6.
    Between the microscopic domain ruled by quantum gravity, and the macroscopic scales described by general relativity, there might be an intermediate, “mesoscopic” regime, where spacetime can still be approximately treated as a differentiable pseudo-Riemannian manifold, with small corrections of quantum gravitational origin. We argue that, unless one accepts to give up the relativity principle, either such a regime does not exist at all—hence, the quantum-to-classical transition is sharp—, or the only mesoscopic, tiny corrections conceivable are on the behaviour of physical (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  3. M. Gadella (forthcoming). A Discussion on the Properties of Gamow States. Foundations of Physics:1-21.
    Gamow states are vector states for the pure decaying part of a quantum resonance. We review and analyze the properties of Gamow vectors in different representations. In particular, we discuss the controversial problem of assigning a mean value of the energy for a Gamow state from several points of view. The question on whether a Gamow state is a pure state or not is also analyzed here, as has relevance on the assignation of a non-zero value for the entropy for (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  4. Dipankar Home & Andrew Robinson (1995). Einstein and Tagore: Man, Nature and Mysticism. Journal of Consciousness Studies 2 (2):167-167.
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Time
     Space and Time, Misc
    Remove from this list | Direct download  
     
    My bibliography  
     
    Export citation  
  5. P. Hut (1999). David Bohm, The Special Theory of Relativity. Journal of Consciousness Studies 6:120-121.
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Time
     Space and Time, Misc
    Remove from this list |
     
    My bibliography  
     
    Export citation  
  6. Ramandeep S. Johal, Renuka Rai & Günter Mahler (forthcoming). Reversible Heat Engines: Bounds on Estimated Efficiency From Inference. Foundations of Physics:1-13.
    We consider work extraction from two finite reservoirs with constant heat capacity, when the thermodynamic coordinates of the process are not fully specified, i.e., are described by probabilities only. Incomplete information refers to both the specific value of the temperature as well as the label of the reservoir to which it is assigned. Based on the concept of inference, we characterize the reduced performance resulting from this lack of control. Indeed, the estimates for the average efficiency reveal that uncertainty regarding (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  7. Adrian Kent (forthcoming). Does It Make Sense to Speak of Self-Locating Uncertainty in the Universal Wave Function? Remarks on Sebens and Carroll. Foundations of Physics:1-7.
    Following a proposal of Vaidman The Stanford encyclopaedia of philosophy, 2014) The probable and the improbable: understanding probability in physics, essays in memory of Itamar Pitowsky, 2011), Sebens and Carroll , have argued that in Everettian quantum theory, observers are uncertain, before they complete their observation, about which Everettian branch they are on. They argue further that this solves the problem of making sense of probabilities within Everettian quantum theory, even though the theory itself is deterministic. We note some problems (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  8. Haichao Li, Guoqin Ge, Lingmin Liao & Shunbin Feng (forthcoming). Electromagnetically Induced Transparency and Autler–Townes Splitting in a Superconducting Quantum Circuit with a Four-Level V-Type Energy Spectrum. Foundations of Physics:1-13.
    We investigate electromagnetically induced transparency and Autler–Townes splitting in a superconducting quantum circuit with a four-level V-type energy spectrum constructed by two coupled superconducting charge qubits. We show that it is possible for this four-level superconducting system to exhibit multiple dips in the absorption spectrum of a probe field, with at most three dips resulting from a combination of two ATS subsystems, which indicates the breakdown of the traditional correspondence between a \\) -level system and \ dips. It is also (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  9. Joffrey K. Peters, Jingyun Fan, Alan L. Migdall & Sergey V. Polyakov (forthcoming). Experimental Bounds on Classical Random Field Theories. Foundations of Physics:1-9.
    Alternative theories to quantum mechanics motivate important fundamental tests of our understanding and descriptions of the smallest physical systems. Here, using spontaneous parametric downconversion as a heralded single-photon source, we place experimental limits on a class of alternative theories, consisting of classical field theories which result in power-dependent normalized correlation functions. In addition, we compare our results with standard quantum mechanical interpretations of our spontaneous parametric downconversion source over an order of magnitude in intensity. Our data match the quantum mechanical (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  10. Lee Smolin (forthcoming). Unification of the State with the Dynamical Law. Foundations of Physics:1-10.
    We address the question of why particular laws were selected for the universe, by proposing a mechanism for laws to evolve. Normally in physical theories, timeless laws act on time-evolving states. We propose that this is an approximation, good on time scales shorter than cosmological scales, beyond which laws and states are merged into a single entity that evolves in time. Furthermore the approximate distinction between laws and states, when it does emerge, is dependent on the initial conditions. These ideas (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  11. S. R. Vatsya (forthcoming). Formulation of Spinors in Terms of Gauge Fields. Foundations of Physics:1-16.
    It is shown in the present paper that the transformation relating a parallel transported vector in a Weyl space to the original one is the product of a multiplicative gauge transformation and a proper orthochronous Lorentz transformation. Such a Lorentz transformation admits a spinor representation, which is obtained and used to deduce the transportation properties of a Weyl spinor, which are then expressed in terms of a composite gauge group defined as the product of a multiplicative gauge group and the (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation