Bookmark and Share

Philosophy of Physical Science

Edited by Hans Halvorson (Princeton University)
Assistant editor: Justin Bzovy (University of Western Ontario)
Material to categorize found
Search inside:
(import / add options)   Sort by:
  1. Gabriel Catren (forthcoming). On the Relation Between Gauge and Phase Symmetries. Foundations of Physics:1-19.
    We propose a group-theoretical interpretation of the fact that the transition from classical to quantum mechanics entails a reduction in the number of observables needed to define a physical state (e.g. from \(q\) and \(p\) to \(q\) or \(p\) in the simplest case). We argue that, in analogy to gauge theories, such a reduction results from the action of a symmetry group. To do so, we propose a conceptual analysis of formal tools coming from symplectic geometry and group representation theory, (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  2. Andrea Crespi, Roberto Osellame, Linda Sansoni, Paolo Mataloni, Fabio Sciarrino & Roberta Ramponi (2014). Fabrication of Quantum Photonic Integrated Circuits by Means of Femtosecond Laser Pulses. Foundations of Physics 44 (8):843-855.
    Femtosecond laser microfabrication has emerged in the last decade as a powerful technique for direct inscription of low loss optical waveguides in practically any transparent dielectric substrate, showing outstanding versatility. Prototyping of new devices is made rapid, cheap and easy: optical circuits are written directly buried in the substrate, using the laser beam as an optical pen, without any need of costly masks as required by conventional photolithography. Many proof-of-principle demonstrations of integrated optics can be obtained, including splitters, directional couplers, (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  3. Dennis Dieks (forthcoming). The Logic of Identity: Distinguishability and Indistinguishability in Classical and Quantum Physics. Foundations of Physics:1-15.
    The suggestion that particles of the same kind may be indistinguishable in a fundamental sense, even so that challenges to traditional notions of individuality and identity may arise, has first come up in the context of classical statistical mechanics. In particular, the Gibbs paradox has sometimes been interpreted as a sign of the untenability of the classical concept of a particle and as a premonition that quantum theory is needed. This idea of a ‘quantum connection’ stubbornly persists in the literature, (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  4. Donatello Dolce & Andrea Perali (2014). The Role of Quantum Recurrence in Superconductivity, Carbon Nanotubes and Related Gauge Symmetry Breaking. Foundations of Physics 44 (9):905-922.
    Pure quantum phenomena are characterized by intrinsic recurrences in space and time. We use this intrinsic periodicity as a quantization condition to derive a heuristic description of the essential quantum phenomenology of superconductivity. The resulting description is based on fundamental quantum dynamics and geometrical considerations, rather than on microscopical characteristics of the superconducting materials. This allows us to investigate the related gauge symmetry breaking in terms of the competition between quantum recurrence and thermal noise. We also test the validity of (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  5. J. Doyne Farmer (2014). Hypotheses Non Fingo: Problems with the Scientific Method in Economics. Journal of Economic Methodology 20 (4):377-385.
    Although it is often said that economics is too much like physics, to a physicist economics is not at all like physics. The difference is in the scientific methods of the two fields: theoretical economics uses a top down approach in which hypothesis and mathematical rigor come first and empirical confirmation comes second. Physics, in contrast, embraces the bottom up ‘experimental philosophy’ of Newton, in which ‘hypotheses are inferred from phenomena, and afterward rendered general by induction’. Progress would accelerates if (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (3 more)  
     
    My bibliography  
     
    Export citation  
  6. Sebastian Fortin & Leonardo Vanni (forthcoming). Quantum Decoherence: A Logical Perspective. Foundations of Physics:1-11.
    The so-called classical limit of quantum mechanics is generally studied in terms of the decoherence of the state operator that characterizes a system. This is not the only possible approach to decoherence. In previous works we have presented the possibility of studying the classical limit in terms of the decoherence of relevant observables of the system. On the basis of this approach, in this paper we introduce the classical limit from a logical perspective, by studying the way in which the (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  7. Robert B. Griffiths (2014). The New Quantum Logic. Foundations of Physics 44 (6):610-640.
    It is shown how all the major conceptual difficulties of standard (textbook) quantum mechanics, including the two measurement problems and the (supposed) nonlocality that conflicts with special relativity, are resolved in the consistent or decoherent histories interpretation of quantum mechanics by using a modified form of quantum logic to discuss quantum properties (subspaces of the quantum Hilbert space), and treating quantum time development as a stochastic process. The histories approach in turn gives rise to some conceptual difficulties, in particular the (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  8. Robert B. Mann & Eduardo Martín-Martínez (2014). Quantum Thermometry. Foundations of Physics 44 (5):492-511.
    We show how Berry phase can be used to construct a precision quantum thermometer. An important advantage of our scheme is that there is no need for the thermometer to acquire thermal equilibrium with the sample. This reduces measurement times and avoids precision limitations. We also discuss how such methods can be used to detect the Unruh effect.
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  9. Ulrich Mohrhoff (2014). Manifesting the Quantum World. Foundations of Physics 44 (6):641-677.
    In resisting attempts to explain the unity of a whole in terms of a multiplicity of interacting parts, quantum mechanics calls for an explanatory concept that proceeds in the opposite direction: from unity to multiplicity. Being part of the Scientific Image of the world, the theory concerns the process by which (the physical aspect of) what Sellars called the Manifest Image of the world comes into being. This process consists in the progressive differentiation of an intrinsically undifferentiated entity. By entering (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  10. Luca Moretti (2014). String Theory and the Scientific Method: Interview with Richard Dawid. The Reasoner 8 (8):87-89.
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download  
     
    My bibliography  
     
    Export citation  
  11. Kosuke Odagiri (2014). Standard Model Gauge Couplings From Gauge-Dilatation Symmetry Breaking. Foundations of Physics 44 (9):932-952.
    It is well known that the self-energy of the gauge bosons is quadratically divergent in the Standard Model when a simple cutoff is imposed. We demonstrate phenomenologically that the quadratic divergences in fact unify. The unification occurs at a surprisingly low scale, \(\Lambda _\mathrm {u}\approx 4\times 10^7\) GeV. Suppose now that there is a spontaneously broken rotational symmetry between the space-time coordinates and gauge theoretical phases. The symmetry-breaking pattern is such that the gauge bosons arise as the massless Goldstone bosons, (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  12. Julien Page & Gabriel Catren (forthcoming). Towards a Galoisian Lnterpretation of Heisenberg Lndeterminacy Principle. Foundations of Physics:1-13.
    We revisit Heisenberg indeterminacy principle in the light of the Galois–Grothendieck theory for the case of finite abelian Galois extensions. In this restricted framework, the Galois–Grothendieck duality between finite K-algebras split by a Galois extension \(L\) and finite \(Gal(L{:}K)\) -sets can be reformulated as a Pontryagin duality between two abelian groups. We define a Galoisian quantum model in which the Heisenberg indeterminacy principle (formulated in terms of the notion of entropic indeterminacy) can be understood as a manifestation of a Galoisian (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  13. Igor Peña & Daniel Sudarsky (2014). On the Possibility of Measuring the Unruh Effect. Foundations of Physics 44 (6):689-708.
    There is a persistent state of confusion regarding the nature of the Unruh effect. We will argue that, in contrast to some interpretations thereof, the effect does not represent any novel physics and that, by its very nature, the effect is fundamentally unmeasurable in all experiments of the kind that have been contemplated until now. Also, we discuss what aspects connected with this effect one might consider as possibilities to be explored empirically and what their precise meaning may be regarding (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  14. Rodney Van Meter (2014). Quantum Computing's Classical Problem, Classical Computing's Quantum Problem. Foundations of Physics 44 (8):819-828.
    Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classical computers can already do. At the same time, those classical (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  15. P. Watson & A. J. Bracken (2014). Quantum Phase Space From Schwinger's Measurement Algebra. Foundations of Physics 44 (7):762-780.
    Schwinger’s algebra of microscopic measurement, with the associated complex field of transformation functions, is shown to provide the foundation for a discrete quantum phase space of known type, equipped with a Wigner function and a star product. Discrete position and momentum variables label points in the phase space, each taking \(N\) distinct values, where \(N\) is any chosen prime number. Because of the direct physical interpretation of the measurement symbols, the phase space structure is thereby related to definite experimental configurations.
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation  
  16. Adrian Wüthrich (2014). Local Acausality. Foundations of Physics 44 (6):594-609.
    A fair amount of recent scholarship has been concerned with correcting a supposedly wrong, but wide-spread, assessment of the consequences of the empirical falsification of Bell-type inequalities. In particular, it has been claimed that Bell-type inequalities follow from “locality tout court” without additional assumptions such as “realism” or “hidden variables”. However, this line of reasoning conflates restrictions on the spatio-temporal relation between causes and their effects (“locality”) and the assumption of a cause for every event (“causality”). It thus fails to (...)
    Select appropriate categories:

    Or:

    Select a category by name

    Complex Systems
     Artificial Life
     Chaos
     Complexity
     Emergence
     Nonlinear Dynamics
     Systems Theory
     Complex Systems, Misc
    Phil of Chemistry
     Chemical Atomism
     Chemical Bonding
     Chemical Explanation
     Chemical Synthesis
     Chemical Elements and Substances
     Realism in Chemistry
     Chemical Instrumentation
     Inorganic Chemistry
     Interlevel Relations in Chemistry
     Structure in Chemistry
     The Periodic Table
     Thermodynamics and Statistical Mechanics
     History of Chemistry
     Quantum Chemistry
     Organic Chemistry
     Phil of Chemistry, Misc
    Phil of Cosmology
     The Early Universe
     Design and Observership in Cosmology
     Phil of Cosmology, Miscellaneous
    Phil of Earth SciencesPhil of Physics, Miscellaneous
     Astrophysics
     Atomic and Molecular Physics
     Biophysics
     Condensed Matter Physics
     Classical Mechanics
     Electromagnetism
     Gauge Theories
     History of Physics
     Matter
     Particle Physics
     Solid State Physics
     String Theory
     Thermodynamics and Statistical Mechanics
     Symmetry in Physics
     Phil of Physics, General Works
     Phil of Physics, Misc
    Phil of Physical Science, Misc
     Probability in the Physical Sciences
     Interlevel Relations in Physical Science
     Philosophy of Physical Science, Miscellaneous
    Quantum Mechanics
     Interpretation of Quantum Mechanics
     Quantum Theories
     Quantum Nonlocality
     Quantum Mechanics, Miscellaneous
    Space and Time
     Metaphysics of Spacetime
     Special Relativity
     General Relativity
     Physics of Time
     Space and Time, Misc
    Remove from this list | Direct download (2 more)  
     
    My bibliography  
     
    Export citation