Switch to: References

Add citations

You must login to add citations.
  1. Probabilities in Statistical Mechanics.Wayne C. Myrvold - 2016 - In Alan Hájek & Christopher Hitchcock (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 573-600.
    This chapter will review selected aspects of the terrain of discussions about probabilities in statistical mechanics (with no pretensions to exhaustiveness, though the major issues will be touched upon), and will argue for a number of claims. None of the claims to be defended is entirely original, but all deserve emphasis. The first, and least controversial, is that probabilistic notions are needed to make sense of statistical mechanics. The reason for this is the same reason that convinced Maxwell, Gibbs, and (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  • The mereology of thermodynamic equilibrium.Michael te Vrugt - 2021 - Synthese 199 (5-6):12891-12921.
    The special composition question, which asks under which conditions objects compose a further object, establishes a central debate in modern metaphysics. Recent successes of inductive metaphysics, which studies the implications of the natural sciences for metaphysical problems, suggest that insights into the SCQ can be gained by investigating the physics of composite systems. In this work, I show that the minus first law of thermodynamics, which is concerned with the approach to equilibrium, leads to a new approach to the SCQ, (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Understanding probability and irreversibility in the Mori-Zwanzig projection operator formalism.Michael te Vrugt - 2022 - European Journal for Philosophy of Science 12 (3):1-36.
    Explaining the emergence of stochastic irreversible macroscopic dynamics from time-reversible deterministic microscopic dynamics is one of the key problems in philosophy of physics. The Mori-Zwanzig projection operator formalism, which is one of the most important methods of modern nonequilibrium statistical mechanics, allows for a systematic derivation of irreversible transport equations from reversible microdynamics and thus provides a useful framework for understanding this issue. However, discussions of the MZ formalism in philosophy of physics tend to focus on simple variants rather than (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Do large probabilities explain better?Michael Strevens - 2000 - Philosophy of Science 67 (3):366-390.
    It is widely held that the size of a probability makes no difference to the quality of a probabilistic explanation. I argue that explanatory practice in statistical physics belies this claim. The claim has gained currency only because of an impoverished conception of probabilistic processes and an unwarranted assumption that all probabilistic explanations have a single form.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  • Interpretive analogies between quantum and statistical mechanics.C. D. McCoy - 2020 - European Journal for Philosophy of Science 10 (1):9.
    The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • GRW: A case study in quantum ontology.Peter J. Lewis - 2006 - Philosophy Compass 1 (2):224–244.
    This article provides an overview of the philosophical literature on the GRW theory of quantum mechanics, and argues for a particular position regarding that literature. Much of the literature is ontological; it attempts to defend a conception of what the world is like according to the GRW theory against perceived competitors. I argue that there is no real debate here, since these supposedly conflicting positions are better regarded as alternative and compatible ways of describing the world of the GRW theory.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Is the Universe Really That Simple?Milan M. Ćirković - 2002 - Foundations of Physics 32 (7):1141-1157.
    The intriguing recent suggestion of Tegmark that the universe—contrary to all our experiences and expectations—contains only a small amount of information due to an extremely high degree of internal symmetry is critically examined. It is shown that there are several physical processes, notably Hawking evaporation of black holes and non-zero decoherence time effects described by Plaga, as well as thought experiments of Deutsch and Tegmark himself, which can be construed as arguments against the low-information universe hypothesis. Some ramifications for both (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Can We Explain Thermodynamics By Quantum Decoherence?Meir Hemmo & Orly Shenker - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):555-568.
    Can we explain the laws of thermodynamics, in particular the irreversible increase of entropy, from the underlying quantum mechanical dynamics? Attempts based on classical dynamics have all failed. Albert (1994a,b; 2000) proposed a way to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the wavefunction of Ghirardi, Rimini and Weber (1986). In this paper we propose an alternative way to explain thermodynamics within no-collapse interpretations of quantum mechanics. Our approach relies on the standard (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Discussion: The Foundations of Statistical Mechanics—Questions and Answers.Amit Hagar - 2005 - Philosophy of Science 72 (3):468-478.
    Huw Price (1996, 2002, 2003) argues that causal-dynamical theories that aim to explain thermodynamic asymmetry in time are misguided. He points out that in seeking a dynamical factor responsible for the general tendency of entropy to increase, these approaches fail to appreciate the true nature of the problem in the foundations of statistical mechanics (SM). I argue that it is Price who is guilty of misapprehension of the issue at stake. When properly understood, causal-dynamical approaches in the foundations of SM (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • C‐theories of time: On the adirectionality of time.Matt Farr - 2020 - Philosophy Compass (12):1-17.
    “The universe is expanding, not contracting.” Many statements of this form appear unambiguously true; after all, the discovery of the universe’s expansion is one of the great triumphs of empirical science. However, the statement is time-directed: the universe expands towards what we call the future; it contracts towards the past. If we deny that time has a direction, should we also deny that the universe is really expanding? This article draws together and discusses what I call ‘C-theories’ of time — (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Aharonov Approach to Equilibrium.Foad Dizadji-Bahmani - 2011 - Philosophy of Science 78 (5):976-988.
    Using the 'Aharonov approach', Linden and colleagues purportedly prove that reaching equilibrium is a universal property of quantum systems. Such a proof would constitute a very significant result in the foundations of statistical mechanics. I argue that, as it stands, this proof is not sound. However, based on the their theorems, I construct an argument for the conclusion that an arbitrary small subsystem of a large quantum system typically tends toward and remains in, or close to, equilibrium. This is the (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Neo-Nagelian reduction: a statement, defence, and application.Foad Dizadji-Bahmani - 2011 - Dissertation, London School of Economics
    The thesis proposes, defends, and applies a new model of inter-theoretic reduction, called "Neo-Nagelian" reduction. There are numerous accounts of inter-theoretic reduction in the philosophy of science literature but the most well-known and widely-discussed is the Nagelian one. In the thesis I identify various kinds of problems which the Nagelian model faces. Whilst some of these can be resolved, pressing ones remain. In lieu of the Nagelian model, other models of inter-theoretic reduction have been proposed, chief amongst which are so-called (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, I (...)
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A novel explanation for the very special initial state of the universe.Elias Okon & Daniel Sudarsky - unknown
    We put forward a proposal that combines objective collapse models, developed in connection with quantum-foundational questions, with the so-called Weyl curvature hypothesis, introduced by Roger Penrose as an attempt to account for the very special initial state of the universe. In particular, we explain how a curvature dependence of the collapse rate in such models, an idea already shown to help in the context of black holes and information loss, could also offer a dynamical justification for Penrose's conjecture.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations