Switch to: References

Add citations

You must login to add citations.
  1. Ordinal analysis of partial combinatory algebras.Paul Shafer & Sebastiaan A. Terwijn - 2021 - Journal of Symbolic Logic 86 (3):1154-1188.
    For every partial combinatory algebra, we define a hierarchy of extensionality relations using ordinals. We investigate the closure ordinals of pca’s, i.e., the smallest ordinals where these relations become equal. We show that the closure ordinal of Kleene’s first model is ${\omega _1^{\textit {CK}}}$ and that the closure ordinal of Kleene’s second model is $\omega _1$. We calculate the exact complexities of the extensionality relations in Kleene’s first model, showing that they exhaust the hyperarithmetical hierarchy. We also discuss embeddings of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Open questions in reverse mathematics.Antonio Montalbán - 2011 - Bulletin of Symbolic Logic 17 (3):431-454.
    We present a list of open questions in reverse mathematics, including some relevant background information for each question. We also mention some of the areas of reverse mathematics that are starting to be developed and where interesting open question may be found.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  • On the equimorphism types of linear orderings.Antonio Montalbán - 2007 - Bulletin of Symbolic Logic 13 (1):71-99.
    §1. Introduction. A linear ordering embedsinto another linear ordering if it is isomorphic to a subset of it. Two linear orderings are said to beequimorphicif they can be embedded in each other. This is an equivalence relation, and we call the equivalence classesequimorphism types. We analyze the structure of equimorphism types of linear orderings, which is partially ordered by the embeddability relation. Our analysis is mainly fromthe viewpoints of Computability Theory and Reverse Mathematics. But we also obtain results, as the (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Indecomposable linear orderings and hyperarithmetic analysis.Antonio Montalbán - 2006 - Journal of Mathematical Logic 6 (1):89-120.
    A statement of hyperarithmetic analysis is a sentence of second order arithmetic S such that for every Y⊆ω, the minimum ω-model containing Y of RCA0 + S is HYP, the ω-model consisting of the sets hyperarithmetic in Y. We provide an example of a mathematical theorem which is a statement of hyperarithmetic analysis. This statement, that we call INDEC, is due to Jullien [13]. To the author's knowledge, no other already published, purely mathematical statement has been found with this property (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Equivalence between Fraïssé’s conjecture and Jullien’s theorem.Antonio Montalbán - 2006 - Annals of Pure and Applied Logic 139 (1):1-42.
    We say that a linear ordering is extendible if every partial ordering that does not embed can be extended to a linear ordering which does not embed either. Jullien’s theorem is a complete classification of the countable extendible linear orderings. Fraïssé’s conjecture, which is actually a theorem, is the statement that says that the class of countable linear ordering, quasiordered by the relation of embeddability, contains no infinite descending chain and no infinite antichain. In this paper we study the strength (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Laver and set theory.Akihiro Kanamori - 2016 - Archive for Mathematical Logic 55 (1-2):133-164.
    In this commemorative article, the work of Richard Laver is surveyed in its full range and extent.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Mass problems and hyperarithmeticity.Joshua A. Cole & Stephen G. Simpson - 2007 - Journal of Mathematical Logic 7 (2):125-143.
    A mass problem is a set of Turing oracles. If P and Q are mass problems, we say that P is weakly reducible to Q if for all Y ∈ Q there exists X ∈ P such that X is Turing reducible to Y. A weak degree is an equivalence class of mass problems under mutual weak reducibility. Let [Formula: see text] be the lattice of weak degrees of mass problems associated with nonempty [Formula: see text] subsets of the Cantor (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Bi‐embeddability spectra and bases of spectra.Ekaterina Fokina, Dino Rossegger & Luca San Mauro - 2019 - Mathematical Logic Quarterly 65 (2):228-236.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On bi-embeddable categoricity of algebraic structures.Nikolay Bazhenov, Dino Rossegger & Maxim Zubkov - 2022 - Annals of Pure and Applied Logic 173 (3):103060.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Degrees of bi-embeddable categoricity of equivalence structures.Nikolay Bazhenov, Ekaterina Fokina, Dino Rossegger & Luca San Mauro - 2019 - Archive for Mathematical Logic 58 (5-6):543-563.
    We study the algorithmic complexity of embeddings between bi-embeddable equivalence structures. We define the notions of computable bi-embeddable categoricity, \ bi-embeddable categoricity, and degrees of bi-embeddable categoricity. These notions mirror the classical notions used to study the complexity of isomorphisms between structures. We show that the notions of \ bi-embeddable categoricity and relative \ bi-embeddable categoricity coincide for equivalence structures for \. We also prove that computable equivalence structures have degree of bi-embeddable categoricity \, or \. We furthermore obtain results (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computable bi-embeddable categoricity.Luca San Mauro, Nikolay Bazhenov, Ekaterina Fokina & Dino Rossegger - 2018 - Algebra and Logic 5 (57):392-396.
    We study the algorithmic complexity of isomorphic embeddings between computable structures.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark