Switch to: References

Add citations

You must login to add citations.
  1. Grounding, scientific explanation, and Humean laws.Marc Lange - 2013 - Philosophical Studies 164 (1):255-261.
    It has often been argued that Humean accounts of natural law cannot account for the role played by laws in scientific explanations. Loewer (Philosophical Studies 2012) has offered a new reply to this argument on behalf of Humean accounts—a reply that distinguishes between grounding (which Loewer portrays as underwriting a kind of metaphysical explanation) and scientific explanation. I will argue that Loewer’s reply fails because it cannot accommodate the relation between metaphysical and scientific explanation. This relation also resolves a puzzle (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   62 citations  
  • 1. Really Statistical Explanations and Genetic Drift Really Statistical Explanations and Genetic Drift (pp. 169-188).Marc Lange, Peter Vickers, John Michael, Miles MacLeod, Alexander R. Pruss, David John Baker, Clark Glymour & Simon Fitzpatrick - 2013 - Philosophy of Science 80 (2):169-188.
    Really statistical explanation is a hitherto neglected form of noncausal scientific explanation. Explanations in population biology that appeal to drift are RS explanations. An RS explanation supplies a kind of understanding that a causal explanation of the same result cannot supply. Roughly speaking, an RS explanation shows the result to be mere statistical fallout.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  • (Mis)interpreting Mathematical Models: Drift as a Physical Process.Michael R. Dietrich, Robert A. Skipper Jr & Roberta L. Millstein - 2009 - Philosophy, Theory, and Practice in Biology 1 (20130604):e002.
    Recently, a number of philosophers of biology have endorsed views about random drift that, we will argue, rest on an implicit assumption that the meaning of concepts such as drift can be understood through an examination of the mathematical models in which drift appears. They also seem to implicitly assume that ontological questions about the causality of terms appearing in the models can be gleaned from the models alone. We will question these general assumptions by showing how the same equation (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  • Population and organismal perspectives on trait origins.Brian McLoone - 2020 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 83:101288.
  • Gouldian arguments and the sources of contingency.Alison K. McConwell & Adrian Currie - 2017 - Biology and Philosophy 32 (2):243-261.
    ‘Gouldian arguments’ appeal to the contingency of a scientific domain to establish that domain’s autonomy from some body of theory. For instance, pointing to evolutionary contingency, Stephen Jay Gould suggested that natural selection alone is insufficient to explain life on the macroevolutionary scale. In analysing contingency, philosophers have provided source-independent accounts, understanding how events and processes structure history without attending to the nature of those events and processes. But Gouldian Arguments require source-dependent notions of contingency. An account of contingency is (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Really Statistical Explanations and Genetic Drift.Marc Lange - 2013 - Philosophy of Science 80 (2):169-188.
    Really statistical explanation is a hitherto neglected form of noncausal scientific explanation. Explanations in population biology that appeal to drift are RS explanations. An RS explanation supplies a kind of understanding that a causal explanation of the same result cannot supply. Roughly speaking, an RS explanation shows the result to be mere statistical fallout.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  • The origins of the stochastic theory of population genetics: The Wright-Fisher model.Yoichi Ishida & Alirio Rosales - 2020 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 79 (C):101226.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Is It Like To Be an Environment? A Semantic and Epistemological Inquiry.Philippe Huneman - 2021 - Biological Theory 17 (1):94-112.
    In this article, I consider the term “environment” in various claims and models by evolutionists and ecologists. I ask whether “environment” is amenable to a philosophical explication, in the same way some key terms of evolutionary theorizing such as “fitness,” “species,” or more recently “population” have been. I will claim that it cannot. In the first section, I propose a typology of theoretical terms, according to whether they are univocal or equivocal, and whether they have been the object of formal (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Neutral Spaces and Topological Explanations in Evolutionary Biology: Lessons from Some Landscapes and Mappings.Philippe Huneman - 2018 - Philosophy of Science 85 (5):969-983.
    I consider recent uses of the notion of neutrality in evolutionary biology and ecology, questioning their relevance to the kind of explanation recently labeled ‘topological explanation’. Focusing on fitness landscapes and genotype-phenotype maps, I explore the explanatory uses of neutral subspaces, as modeled in two perspectives: hyperdimensional fitness landscapes and RNA sequence-structure maps. I argue that topological properties of such spaces account for features of evolutionary systems: respectively, capacity for adaptive evolution toward global optima and mutational robustness of genotypes. Thus (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inscrutability and the Opacity of Natural Selection and Random Genetic Drift: Distinguishing the Epistemic and Metaphysical Aspects.Philippe Huneman - 2015 - Erkenntnis 80 (S3):491-518.
    ‘Statisticalists’ argue that the individual interactions of organisms taken together constitute natural selection. On this view, natural selection is an aggregated effect of interactions rather than some added cause acting on populations. The statisticalists’ view entails that natural selection and drift are indistinguishable aggregated effects of interactions, so that it becomes impossible to make a difference between them. The present paper attempts to make sense of the difference between selection and drift, given the main insights of statisticalism; basically, it will (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • An explication of the causal dimension of drift.Peter Gildenhuys - 2009 - British Journal for the Philosophy of Science 60 (3):521-555.
    Among philosophers, controversy over the notion of drift in population genetics is ongoing. This is at least partly because the notion of drift has an ambiguous usage among population geneticists. My goal in this paper is to explicate the causal dimension of drift, to say what causal influences are responsible for the stochasticity in population genetics models. It is commonplace for population genetics to oppose the influence of selection to that of drift, and to consider how the dynamics of populations (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Taming fitness: Organism‐environment interdependencies preclude long‐term fitness forecasting.Guilhem Doulcier, Peter Takacs & Pierrick Bourrat - 2021 - Bioessays 43 (1):2000157.
    Fitness is a central but notoriously vexing concept in evolutionary biology. The propensity interpretation of fitness is often regarded as the least problematic account for fitness. It ties an individual's fitness to a probabilistic capacity to produce offspring. Fitness has a clear causal role in evolutionary dynamics under this account. Nevertheless, the propensity interpretation faces its share of problems. We discuss three of these. We first show that a single scalar value is an incomplete summary of a propensity. Second, we (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Newton on Islandworld: Ontic-Driven Explanations of Scientific Method.Adrian Currie & Kirsten Walsh - 2018 - Perspectives on Science 26 (1):119-156.
    . Philosophers and scientists often cite ontic factors when explaining the methods and success of scientific inquiry. That is, the adoption of a method or approach is explained in reference to the kind of system in which the scientist is interested: these are explanations of why scientists do what they do, that appeal to properties of their target systems. We present a framework for understanding such “Opticks to his Principia. Newton’s optical work is largely experiment-driven, while the Principia is primarily (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Drift beyond Wright–Fisher.Hayley Clatterbuck - 2015 - Synthese 192 (11):3487-3507.
    Several recent arguments by philosophers of biology have challenged the traditional view that evolutionary factors, such as drift and selection, are genuine causes of evolutionary outcomes. In the case of drift, advocates of the statistical theory argue that drift is merely the sampling error inherent in the other stochastic processes of evolution and thus denotes a mathematical, rather than causal, feature of populations. This debate has largely centered around one particular model of drift, the Wright–Fisher model, and this has contributed (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Natural Selection and Drift as Individual-Level Causes of Evolution.Pierrick Bourrat - 2018 - Acta Biotheoretica 66 (3):159-176.
    In this paper I critically evaluate Reisman and Forber’s :1113–1123, 2005) arguments that drift and natural selection are population-level causes of evolution based on what they call the manipulation condition. Although I agree that this condition is an important step for identifying causes for evolutionary change, it is insufficient. Following Woodward, I argue that the invariance of a relationship is another crucial parameter to take into consideration for causal explanations. Starting from Reisman and Forber’s example on drift and after having (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • In What Sense Can There Be Evolution by Natural Selection Without Perfect Inheritance?Pierrick Bourrat - 2019 - International Studies in the Philosophy of Science 32 (1):13-31.
    ABSTRACTIn Darwinian Population and Natural Selection, Peter Godfrey-Smith brought the topic of natural selection back to the forefront of philosophy of biology, highlighting different issues surro...
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Explaining Drift from a Deterministic Setting.Pierrick Bourrat - 2017 - Biological Theory 12 (1):27-38.
    Drift is often characterized in statistical terms. Yet such a purely statistical characterization is ambiguous for it can accept multiple physical interpretations. Because of this ambiguity it is important to distinguish what sorts of processes can lead to this statistical phenomenon. After presenting a physical interpretation of drift originating from the most popular interpretation of fitness, namely the propensity interpretation, I propose a different one starting from an analysis of the concept of drift made by Godfrey-Smith. Further on, I show (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Frameworks, models, and case studies: a new methodology for studying conceptual change in science and philosophy.Matteo De Benedetto - 2022 - Dissertation, Ludwig Maximilians Universität, München
    This thesis focuses on models of conceptual change in science and philosophy. In particular, I developed a new bootstrapping methodology for studying conceptual change, centered around the formalization of several popular models of conceptual change and the collective assessment of their improved formal versions via nine evaluative dimensions. Among the models of conceptual change treated in the thesis are Carnap’s explication, Lakatos’ concept-stretching, Toulmin’s conceptual populations, Waismann’s open texture, Mark Wilson’s patches and facades, Sneed’s structuralism, and Paul Thagard’s conceptual revolutions. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark