Switch to: References

Add citations

You must login to add citations.
  1. On the indestructibility aspects of identity crisis.Grigor Sargsyan - 2009 - Archive for Mathematical Logic 48 (6):493-513.
    We investigate the indestructibility properties of strongly compact cardinals in universes where strong compactness suffers from identity crisis. We construct an iterative poset that can be used to establish Kimchi–Magidor theorem from (in The independence between the concepts of compactness and supercompactness, circulated manuscript), i.e., that the first n strongly compact cardinals can be the first n measurable cardinals. As an application, we show that the first n strongly compact cardinals can be the first n measurable cardinals while the strong (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • The lottery preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
    The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal κ, for example, becomes fully indestructible by <κ-directed closed forcing; a strong cardinal κ becomes indestructible by κ-strategically closed forcing; and a strongly compact cardinal κ becomes indestructible by, among others, the forcing to (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   62 citations  
  • Superstrong and other large cardinals are never Laver indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing Q∈Vθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • The least strongly compact can be the least strong and indestructible.Arthur W. Apter - 2006 - Annals of Pure and Applied Logic 144 (1-3):33-42.
    We construct two models in which the least strongly compact cardinal κ is also the least strong cardinal. In each of these models, κ satisfies indestructibility properties for both its strong compactness and strongness.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Universal indestructibility for degrees of supercompactness and strongly compact cardinals.Arthur W. Apter & Grigor Sargsyan - 2008 - Archive for Mathematical Logic 47 (2):133-142.
    We establish two theorems concerning strongly compact cardinals and universal indestructibility for degrees of supercompactness. In the first theorem, we show that universal indestructibility for degrees of supercompactness in the presence of a strongly compact cardinal is consistent with the existence of a proper class of measurable cardinals. In the second theorem, we show that universal indestructibility for degrees of supercompactness is consistent in the presence of two non-supercompact strongly compact cardinals, each of which exhibits a significant amount of indestructibility (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Universal partial indestructibility and strong compactness.Arthur W. Apter - 2005 - Mathematical Logic Quarterly 51 (5):524-531.
    For any ordinal δ, let λδ be the least inaccessible cardinal above δ. We force and construct a model in which the least supercompact cardinal κ is indestructible under κ-directed closed forcing and in which every measurable cardinal δ < κ is < λδ strongly compact and has its < λδ strong compactness indestructible under δ-directed closed forcing of rank less than λδ. In this model, κ is also the least strongly compact cardinal. We also establish versions of this result (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Supercompactness and level by level equivalence are compatible with indestructibility for strong compactness.Arthur W. Apter - 2007 - Archive for Mathematical Logic 46 (3-4):155-163.
    It is known that if $\kappa < \lambda$ are such that κ is indestructibly supercompact and λ is 2λ supercompact, then level by level equivalence between strong compactness and supercompactness fails. We prove a theorem which points towards this result being best possible. Specifically, we show that relative to the existence of a supercompact cardinal, there is a model for level by level equivalence between strong compactness and supercompactness containing a supercompact cardinal κ in which κ’s strong compactness is indestructible (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Patterns of compact cardinals.Arthur W. Apter - 1997 - Annals of Pure and Applied Logic 89 (2-3):101-115.
    We show relative to strong hypotheses that patterns of compact cardinals in the universe, where a compact cardinal is one which is either strongly compact or supercompact, can be virtually arbitrary. Specifically, we prove if V “ZFC + Ω is the least inaccessible limit of measurable limits of supercompact cardinals + ƒ : Ω → 2 is a function”, then there is a partial ordering P V so that for , There is a proper class of compact cardinals + If (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Indestructibility when the first two measurable cardinals are strongly compact.Arthur W. Apter - 2022 - Journal of Symbolic Logic 87 (1):214-227.
    We prove two theorems concerning indestructibility properties of the first two strongly compact cardinals when these cardinals are in addition the first two measurable cardinals. Starting from two supercompact cardinals $\kappa _1 < \kappa _2$, we force and construct a model in which $\kappa _1$ and $\kappa _2$ are both the first two strongly compact and first two measurable cardinals, $\kappa _1$ ’s strong compactness is fully indestructible, and $\kappa _2$ ’s strong compactness is indestructible under $\mathrm {Add}$ for any (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Level by level equivalence and strong compactness.Arthur W. Apter - 2004 - Mathematical Logic Quarterly 50 (1):51.
    We force and construct models in which there are non-supercompact strongly compact cardinals which aren't measurable limits of strongly compact cardinals and in which level by level equivalence between strong compactness and supercompactness holds non-trivially except at strongly compact cardinals. In these models, every measurable cardinal κ which isn't either strongly compact or a witness to a certain phenomenon first discovered by Menas is such that for every regular cardinal λ > κ, κ is λ strongly compact iff κ is (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Indestructible strong compactness but not supercompactness.Arthur W. Apter, Moti Gitik & Grigor Sargsyan - 2012 - Annals of Pure and Applied Logic 163 (9):1237-1242.
  • Indestructible strong compactness and level by level inequivalence.Arthur W. Apter - 2013 - Mathematical Logic Quarterly 59 (4-5):371-377.
    If are such that δ is indestructibly supercompact and γ is measurable, then it must be the case that level by level inequivalence between strong compactness and supercompactness fails. We prove a theorem which points to this result being best possible. Specifically, we show that relative to the existence of cardinals such that κ1 is λ‐supercompact and λ is inaccessible, there is a model for level by level inequivalence between strong compactness and supercompactness containing a supercompact cardinal in which κ’s (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Indestructibility under adding Cohen subsets and level by level equivalence.Arthur W. Apter - 2009 - Mathematical Logic Quarterly 55 (3):271-279.
    We construct a model for the level by level equivalence between strong compactness and supercompactness in which the least supercompact cardinal κ has its strong compactness indestructible under adding arbitrarily many Cohen subsets. There are no restrictions on the large cardinal structure of our model.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Forcing the Least Measurable to Violate GCH.Arthur W. Apter - 1999 - Mathematical Logic Quarterly 45 (4):551-560.
    Starting with a model for “GCH + k is k+ supercompact”, we force and construct a model for “k is the least measurable cardinal + 2k = K+”. This model has the property that forcing over it with Add preserves the fact k is the least measurable cardinal.
    Direct download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Exactly controlling the non-supercompact strongly compact cardinals.Arthur W. Apter & Joel David Hamkins - 2003 - Journal of Symbolic Logic 68 (2):669-688.
    We summarize the known methods of producing a non-supercompact strongly compact cardinal and describe some new variants. Our Main Theorem shows how to apply these methods to many cardinals simultaneously and exactly control which cardinals are supercompact and which are only strongly compact in a forcing extension. Depending upon the method, the surviving non-supercompact strongly compact cardinals can be strong cardinals, have trivial Mitchell rank or even contain a club disjoint from the set of measurable cardinals. These results improve and (...)
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Indestructibility and destructible measurable cardinals.Arthur W. Apter - 2016 - Archive for Mathematical Logic 55 (1-2):3-18.
    Say that κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}’s measurability is destructible if there exists a κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}. It then follows that A1={δ<κ∣δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_{1} = \{\delta < \kappa \mid \delta}$$\end{document} is measurable, δ is not a limit of measurable cardinals, δ is not δ+ strongly compact, and δ’s measurability is destructible when forcing with partial orderings having rank below λδ} is unbounded (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Aspects of strong compactness, measurability, and indestructibility.Arthur W. Apter - 2002 - Archive for Mathematical Logic 41 (8):705-719.
    We prove three theorems concerning Laver indestructibility, strong compactness, and measurability. We then state some related open questions.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations