Switch to: References

Add citations

You must login to add citations.
  1. On the Turing degrees of minimal index sets.Jason Teutsch - 2007 - Annals of Pure and Applied Logic 148 (1):63-80.
    We study generalizations of shortest programs as they pertain to Schaefer’s problem. We identify sets of -minimal and -minimal indices and characterize their truth-table and Turing degrees. In particular, we show , , and that there exists a Kolmogorov numbering ψ satisfying both and . This Kolmogorov numbering also achieves maximal truth-table degree for other sets of minimal indices. Finally, we show that the set of shortest descriptions, , is 2-c.e. but not co-2-c.e. Some open problems are left for the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Coding true arithmetic in the Medvedev degrees of classes.Paul Shafer - 2012 - Annals of Pure and Applied Logic 163 (3):321-337.
  • ∑5-completeness of index sets arising from the lattice of recursively enumerable sets.Michael A. Jahn - 1996 - Annals of Pure and Applied Logic 80 (1):55-67.
    We extend the techniques of Jahn to show the index set of the major subsets to be ∑5-complete. This was a question left open in Lempp and its solution involves a level-4 construction. We also show how the measuring of e-states arises naturally out of our iterated-trees approach to breaking up requirements.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Σ5-completeness of index sets arising from the recursively enumerable Turing degrees.Michael A. Jahn - 1996 - Annals of Pure and Applied Logic 79 (2):109-137.
    We employ techniques related to Lempp and Lerman's “iterated trees of strategies” to directly measure a Σ5-predicate and use this in showing the index set of the cuppable r.e. sets to be Σ5-complete. We also show how certain technical devices arise naturally out of the iterated-trees context, in particular, links arise as manifestations of a generalized notion of “stage”.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Calibrating randomness.Rod Downey, Denis R. Hirschfeldt, André Nies & Sebastiaan A. Terwijn - 2006 - Bulletin of Symbolic Logic 12 (3):411-491.
    We report on some recent work centered on attempts to understand when one set is more random than another. We look at various methods of calibration by initial segment complexity, such as those introduced by Solovay [125], Downey, Hirschfeldt, and Nies [39], Downey, Hirschfeldt, and LaForte [36], and Downey [31]; as well as other methods such as lowness notions of Kučera and Terwijn [71], Terwijn and Zambella [133], Nies [101, 100], and Downey, Griffiths, and Reid [34]; higher level randomness notions (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  • Extending and interpreting Post’s programme.S. Barry Cooper - 2010 - Annals of Pure and Applied Logic 161 (6):775-788.
    Computability theory concerns information with a causal–typically algorithmic–structure. As such, it provides a schematic analysis of many naturally occurring situations. Emil Post was the first to focus on the close relationship between information, coded as real numbers, and its algorithmic infrastructure. Having characterised the close connection between the quantifier type of a real and the Turing jump operation, he looked for more subtle ways in which information entails a particular causal context. Specifically, he wanted to find simple relations on reals (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark