Switch to: References

Add citations

You must login to add citations.
  1. Local Causality and Completeness: Bell vs. Jarrett. [REVIEW]Travis Norsen - 2009 - Foundations of Physics 39 (3):273-294.
    J.S. Bell believed that his famous theorem entailed a deep and troubling conflict between the empirically verified predictions of quantum theory and the notion of local causality that is motivated by relativity theory. Yet many physicists continue to accept, usually on the reports of textbook writers and other commentators, that Bell’s own view was wrong, and that, in fact, the theorem only brings out a conflict with determinism or the hidden-variables program or realism or some other such principle that (unlike (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Non-separability Does Not Relieve the Problem of Bell’s Theorem.Joe Henson - 2013 - Foundations of Physics 43 (8):1008-1038.
    This paper addresses arguments that “separability” is an assumption of Bell’s theorem, and that abandoning this assumption in our interpretation of quantum mechanics (a position sometimes referred to as “holism”) will allow us to restore a satisfying locality principle. Separability here means that all events associated to the union of some set of disjoint regions are combinations of events associated to each region taken separately.In this article, it is shown that: (a) localised events can be consistently defined without implying separability; (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Some Puzzles and Unresolved Issues About Quantum Entanglement.John Earman - 2015 - Erkenntnis 80 (2):303-337.
    Schrödinger averred that entanglement is the characteristic trait of quantum mechanics. The first part of this paper is simultaneously an exploration of Schrödinger’s claim and an investigation into the distinction between mere entanglement and genuine quantum entanglement. The typical discussion of these matters in the philosophical literature neglects the structure of the algebra of observables, implicitly assuming a tensor product structure of the simple Type I factor algebras used in ordinary Quantum Mechanics . This limitation is overcome by adopting the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   24 citations  
  • A stronger Bell argument for quantum non-locality.Paul M. Näger - unknown
    It is widely accepted that the violation of Bell inequalities excludes local theories of the quantum realm. In this paper I present a stronger Bell argument which even forbids certain non-local theories. The remaining non-local theories, which can violate Bell inequalities, are characterised by the fact that at least one of the outcomes in some sense probabilistically depends both on its distant as well as on its local parameter. While this is not to say that parameter dependence in the usual (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations