Switch to: References

Add citations

You must login to add citations.
  1. Can All Major ROS Forming Sites of the Respiratory Chain Be Activated By High FADH 2 /NADH Ratios?Dave Speijer - 2019 - Bioessays 41 (1):1800180.
    Aspects of peroxisome evolution, uncoupling, carnitine shuttles, supercomplex formation, and missing neuronal fatty acid oxidation (FAO) are linked to reactive oxygen species (ROS) formation in respiratory chains. Oxidation of substrates with high FADH2/NADH (F/N) ratios (e.g., FAs) initiate ROS formation in Complex I due to insufficient availability of its electron acceptor (Q) and reverse electron transport from QH2, e.g., during FAO or glycerol‐3‐phosphate shuttle use. Here it is proposed that the Q‐cycle of Complex III contributes to enhanced ROS formation going (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Metabolic systems maintain stable non‐equilibrium via thermodynamic buffering.Abir U. Igamberdiev & Leszek A. Kleczkowski - 2009 - Bioessays 31 (10):1091-1099.
    Here, we analyze how the set of nucleotides in the cell is equilibrated and how this generates simple rules that help the cell to organize itself via maintenance of a stable non‐equilibrium state. A major mechanism operating to achieve this state is thermodynamic buffering via high activities of equilibrating enzymes such as adenylate kinase. Under stable non‐equilibrium, the ratios of free and Mg‐bound adenylates, Mg2+ and membrane potentials are interdependent and can be computed. The adenylate status is balanced with the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark