Switch to: References

Citations of:

Data without models merging with models without data

In Fred C. Boogerd, Frank J. Bruggeman, Jan-Hendrik S. Hofmeyr & Hans V. Westerhoff (eds.), Systems Biology: Philosophical Foundations. Elsevier. pp. 181--213 (2007)

Add citations

You must login to add citations.
  1. Interdisciplinarity in the Making: Models and Methods in Frontier Science.Nancy J. Nersessian - 2022 - Cambridge, MA: MIT.
    A cognitive ethnography of how bioengineering scientists create innovative modeling methods. In this first full-scale, long-term cognitive ethnography by a philosopher of science, Nancy J. Nersessian offers an account of how scientists at the interdisciplinary frontiers of bioengineering create novel problem-solving methods. Bioengineering scientists model complex dynamical biological systems using concepts, methods, materials, and other resources drawn primarily from engineering. They aim to understand these systems sufficiently to control or intervene in them. What Nersessian examines here is how cutting-edge bioengineering (...)
  • Scientific perspectivism: A philosopher of science's response to the challenge of big data biology.Werner Callebaut - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):69-80.
    Big data biology—bioinformatics, computational biology, systems biology (including ‘omics’), and synthetic biology—raises a number of issues for the philosophy of science. This article deals with several such: Is data-intensive biology a new kind of science, presumably post-reductionistic? To what extent is big data biology data-driven? Can data ‘speak for themselves?’ I discuss these issues by way of a reflection on Carl Woese’s worry that “a society that permits biology to become an engineering discipline, that allows that science to slip into (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • Agents, Modeling Processes, and the Allure of Prophecy.William A. Griffin, Manfred D. Laubichler & Werner Callebaut - 2008 - Biological Theory 3 (1):73-78.
    Ioannidis [Why most published research findings are false. PLoS Med 2: e124 ] identifies six factors that contribute to explaining why most of the current published research findings are more likely to be false than true, and argues that for many current scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias. In this article, we argue that three “hot” areas in current biological research, viz., agent-based modeling, evolutionary developmental biology , and systems biology, are (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Biocomplexity as a Challenge for Biological Theory.Werner Callebaut & Manfred D. Laubichler - 2007 - Biological Theory 2 (1):1-2.
  • Philosophy of Science in Germany, 1992–2012: Survey-Based Overview and Quantitative Analysis.Matthias Unterhuber, Alexander Gebharter & Gerhard Schurz - 2014 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 45 (1):71-160.
    An overview of the German philosophy of science community is given for the years 1992–2012, based on a survey in which 159 philosophers of science in Germany participated. To this end, the institutional background of the German philosophy of science community is examined in terms of journals, centers, and associations. Furthermore, a qualitative description and a quantitative analysis of our survey results are presented. Quantitative estimates are given for: (a) academic positions, (b) research foci, (c) philosophers’ of science most important (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Liberté, Egalité, Modularité: In Memory of Werner Callebaut (1952–2014).Gerd B. Müller - 2015 - Biological Theory 10 (1):1-4.
  • Can an Engineer Fix an Immune System?–Rethinking theoretical biology.Claudio Mattiussi - 2013 - Acta Biotheoretica 61 (2):223-258.
    In an instant classic paper ; 2002: 179–182) biologist Yuri Lazebnik deplores the poor effectiveness of the approach adopted by biologists to understand and “fix” biological systems. Lazebnik suggests that to remedy this state of things biologist should take inspiration from the approach used by engineers to design, understand, and troubleshoot technological systems. In the present paper I substantiate Lazebnik’s analysis by concretely showing how to apply the engineering approach to biological problems. I use an actual example of electronic circuit (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The creative industry of integrative systems biology.Miles MacLeod & Nancy J. Nersessian - 2013 - Mind and Society 12 (1):35-48.
    Integrative systems biology is among the most innovative fields of contemporary science, bringing together scientists from a range of diverse backgrounds and disciplines to tackle biological complexity through computational and mathematical modeling. The result is a plethora of problem-solving techniques, theoretical perspectives, lab-structures and organizations, and identity labels that have made it difficult for commentators to pin down precisely what systems biology is, philosophically or sociologically. In this paper, through the ethnographic investigation of two ISB laboratories, we explore the particular (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • The applicability of mathematics in computational systems biology and its experimental relations.Miles MacLeod - 2021 - European Journal for Philosophy of Science 11 (3):1-21.
    In 1966 Richard Levins argued that applications of mathematics to population biology faced various constraints which forced mathematical modelers to trade-off at least one of realism, precision, or generality in their approach. Much traditional mathematical modeling in biology has prioritized generality and precision in the place of realism through strategies of idealization and simplification. This has at times created tensions with experimental biologists. The past 20 years however has seen an explosion in mathematical modeling of biological systems with the rise (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Modeling systems-level dynamics: Understanding without mechanistic explanation in integrative systems biology.Miles MacLeod & Nancy J. Nersessian - 2015 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 49:1-11.
  • Interdisciplinary problem- solving: emerging modes in integrative systems biology.Miles MacLeod & Nancy J. Nersessian - 2016 - European Journal for Philosophy of Science 6 (3):401-418.
    Integrative systems biology is an emerging field that attempts to integrate computation, applied mathematics, engineering concepts and methods, and biological experimentation in order to model large-scale complex biochemical networks. The field is thus an important contemporary instance of an interdisciplinary approach to solving complex problems. Interdisciplinary science is a recent topic in the philosophy of science. Determining what is philosophically important and distinct about interdisciplinary practices requires detailed accounts of problem-solving practices that attempt to understand how specific practices address the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Heuristic approaches to models and modeling in systems biology.Miles MacLeod - 2016 - Biology and Philosophy 31 (3):353-372.
    Prediction and control sufficient for reliable medical and other interventions are prominent aims of modeling in systems biology. The short-term attainment of these goals has played a strong role in projecting the importance and value of the field. In this paper I identify the standard models must meet to achieve these objectives as predictive robustness—predictive reliability over large domains. Drawing on the results of an ethnographic investigation and various studies in the systems biology literature, I explore four current obstacles to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Coupling simulation and experiment: The bimodal strategy in integrative systems biology.Miles MacLeod & Nancy J. Nersessian - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4a):572-584.
    The importation of computational methods into biology is generating novel methodological strategies for managing complexity which philosophers are only just starting to explore and elaborate. This paper aims to enrich our understanding of methodology in integrative systems biology, which is developing novel epistemic and cognitive strategies for managing complex problem-solving tasks. We illustrate this through developing a case study of a bimodal researcher from our ethnographic investigation of two systems biology research labs. The researcher constructed models of metabolic and cell-signaling (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  • Building Simulations from the Ground Up: Modeling and Theory in Systems Biology.Miles MacLeod & Nancy J. Nersessian - 2013 - Philosophy of Science 80 (4):533-556.
    In this article, we provide a case study examining how integrative systems biologists build simulation models in the absence of a theoretical base. Lacking theoretical starting points, integrative systems biology researchers rely cognitively on the model-building process to disentangle and understand complex biochemical systems. They build simulations from the ground up in a nest-like fashion, by pulling together information and techniques from a variety of possible sources and experimenting with different structures in order to discover a stable, robust result. Finally, (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  • Convenience experimentation.Ulrich Krohs - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):52-57.
  • Two sides of the same coin? The epistemic cultures of systems and synthetic biology.Karen Kastenhofer - 2013 - Studies in History and Philosophy of Biological and Biomedical Sciences 44 (2):130-140.
    Systems and synthetic biology both emerged around the turn of this century as labels for new research approaches. Although their disciplinary status as well as their relation to each other is rarely discussed in depth, now and again the idea is invoked that both approaches represent ‘two sides of the same coin’. The following paper focuses on this general notion and compares it with empirical findings concerning the epistemic cultures prevalent in the two contexts. Drawing on interviews with researchers from (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Sum of the Parts: Large-Scale Modeling in Systems Biology.Fridolin Gross & Sara Green - 2017 - Philosophy, Theory, and Practice in Biology 9 (10).
    Systems biologists often distance themselves from reductionist approaches and formulate their aim as understanding living systems “as a whole.” Yet, it is often unclear what kind of reductionism they have in mind, and in what sense their methodologies would offer a superior approach. To address these questions, we distinguish between two types of reductionism which we call “modular reductionism” and “bottom-up reductionism.” Much knowledge in molecular biology has been gained by decomposing living systems into functional modules or through detailed studies (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Pluralization through epistemic competition: scientific change in times of data-intensive biology.Fridolin Gross, Nina Kranke & Robert Meunier - 2019 - History and Philosophy of the Life Sciences 41 (1):1.
    We present two case studies from contemporary biology in which we observe conflicts between established and emerging approaches. The first case study discusses the relation between molecular biology and systems biology regarding the explanation of cellular processes, while the second deals with phylogenetic systematics and the challenge posed by recent network approaches to established ideas of evolutionary processes. We show that the emergence of new fields is in both cases driven by the development of high-throughput data generation technologies and the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Temporal decomposition: A strategy for building mathematical models of complex metabolic systems.Josephine Donaghy - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 48:1-11.
  • Ins and outs of systems biology vis-à-vis molecular biology: Continuation or clear cut?Philippe De Backer, Danny De Waele & Linda Van Speybroeck - 2009 - Acta Biotheoretica 58 (1):15-49.
    The comprehension of living organisms in all their complexity poses a major challenge to the biological sciences. Recently, systems biology has been proposed as a new candidate in the development of such a comprehension. The main objective of this paper is to address what systems biology is and how it is practised. To this end, the basic tools of a systems biological approach are explored and illustrated. In addition, it is questioned whether systems biology ‘revolutionizes’ molecular biology and ‘transcends’ its (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Transcendental niche construction.Werner Callebaut - 2007 - Acta Biotheoretica 55 (1):73-90.
    I discuss various reactions to my article “Again, what the philosophy of science is not” [Callebaut (Acta Biotheor 53:92–122 (2005a))], most of which concern the naturalism issue, the place of the philosophy of biology within philosophy of science and philosophy at large, and the proper tasks of the philosophy of biology.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scientific perspectivism: A philosopher of science’s response to the challenge of big data biology.Werner Callebaut - 2012 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43 (1):69-80.
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • Naturalizing Theorizing: Beyond a Theory of Biological Theories. [REVIEW]Werner Callebaut - 2013 - Biological Theory 7 (4):413-429.
    Although “theory” has been the prevalent unit of analysis in the meta-study of science throughout most of the twentieth century, the concept remains elusive. I further explore the leitmotiv of several authors in this issue: that we should deal with theorizing (rather than theory) in biology as a cognitive activity that is to be investigated naturalistically. I first contrast how philosophers and biologists have tended to think about theory in the last century or so, and consider recent calls to upgrade (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Formalizing Biology.Werner Callebaut & Manfred D. Laubichler - 2008 - Biological Theory 3 (1):1-2.
    Ioannidis [Why most published research findings are false. PLoS Med 2: e124 ] identifies six factors that contribute to explaining why most of the current published research findings are more likely to be false than true, and argues that for many current scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias. In this article, we argue that three “hot” areas in current biological research, viz., agent-based modeling, evolutionary developmental biology, and systems biology, are especially (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Beyond Generalized Darwinism. II. More Things in Heaven and Earth.Werner Callebaut - 2011 - Biological Theory 6 (4):351-365.
    This is the second of two articles in which I reflect on “generalized Darwinism” as currently discussed in evolutionary economics. In the companion article (Callebaut, Biol Theory 6. doi: 10.1007/s13752-013-0086-2, 2011, this issue) I approached evolutionary economics from the naturalistic perspectives of evolutionary epistemology and the philosophy of biology, contrasted evolutionary economists’ cautious generalizations of Darwinism with “imperialistic” proposals to unify the behavioral sciences, and discussed the continued resistance to biological ideas in the social sciences. Here I assess Generalized Darwinism (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Systems biology and the integration of mechanistic explanation and mathematical explanation.Ingo Brigandt - 2013 - Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):477-492.
    The paper discusses how systems biology is working toward complex accounts that integrate explanation in terms of mechanisms and explanation by mathematical models—which some philosophers have viewed as rival models of explanation. Systems biology is an integrative approach, and it strongly relies on mathematical modeling. Philosophical accounts of mechanisms capture integrative in the sense of multilevel and multifield explanations, yet accounts of mechanistic explanation have failed to address how a mathematical model could contribute to such explanations. I discuss how mathematical (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   53 citations  
  • Mechanistic Explanations and Models in Molecular Systems Biology.Fred C. Boogerd, Frank J. Bruggeman & Robert C. Richardson - 2013 - Foundations of Science 18 (4):725-744.
    Mechanistic models in molecular systems biology are generally mathematical models of the action of networks of biochemical reactions, involving metabolism, signal transduction, and/or gene expression. They can be either simulated numerically or analyzed analytically. Systems biology integrates quantitative molecular data acquisition with mathematical models to design new experiments, discriminate between alternative mechanisms and explain the molecular basis of cellular properties. At the heart of this approach are mechanistic models of molecular networks. We focus on the articulation and development of mechanistic (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association.M. Suarez, M. Dorato & M. Redei (eds.) - 2009 - Dordrecht, Netherland: Springer.
  • Gauge symmetry and the Theta vacuum.Richard Healey - 2007 - In Mauricio Suarez, Mauro Dorato & Miklos Redei (eds.), EPSA Philosophical Issues in the Sciences · Launch of the European Philosophy of Science Association. Springer. pp. 105--116.
    According to conventional wisdom, local gauge symmetry is not a symmetry of nature, but an artifact of how our theories represent nature. But a study of the so-called theta-vacuum appears to refute this view. The ground state of a quantized non-Abelian Yang-Mills gauge theory is characterized by a real-valued, dimensionless parameter theta—a fundamental new constant of nature. The structure of this vacuum state is often said to arise from a degeneracy of the vacuum of the corresponding classical theory, which degeneracy (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation