Switch to: References

Add citations

You must login to add citations.
  1. Introduction: the plurality of modeling.Huneman Philippe & Lemoine Maël - 2014 - History and Philosophy of the Life Sciences 36 (1):5-15.
    Philosophers of science have recently focused on the scientific activity of modeling phenomena, and explicated several of its properties, as well as the activities embedded into it. A first approach to modeling has been elaborated in terms of representing a target system: yet other epistemic functions, such as producing data or detecting phenomena, are at least as relevant. Additional useful distinctions have emerged, such as the one between phenomenological and mechanistic models. In biological sciences, besides mathematical models, models now come (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Are Model Organisms Theoretical Models?Veli-Pekka Parkkinen - 2017 - Disputatio 9 (47):471-498.
    This article compares the epistemic roles of theoretical models and model organisms in science, and specifically the role of non-human animal models in biomedicine. Much of the previous literature on this topic shares an assumption that animal models and theoretical models have a broadly similar epistemic role—that of indirect representation of a target through the study of a surrogate system. Recently, Levy and Currie have argued that model organism research and theoretical modelling differ in the justification of model-to-target inferences, such (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Scientific inertia in animal-based research in biomedicine.Simon Lohse - 2021 - Studies in History and Philosophy of Science Part A 89 (C):41-51.
  • Introduction: the plurality of modeling.Philippe Huneman & Maël Lemonie - 2014 - History and Philosophy of the Life Sciences 36 (1):5-15.
    Philosophers of science have recently focused on the scientific activity of modeling phenomena, and explicated several of its properties, as well as the activities embedded into it. A first approach to modeling has been elaborated in terms of representing a target system: yet other epistemic functions, such as producing data or detecting phenomena, are at least as relevant. Additional useful distinctions have emerged, such as the one between phenomenological and mechanistic models. In biological sciences, besides mathematical models, models now come (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mouse avatars of human cancers: the temporality of translation in precision oncology.Sara Green, Mie S. Dam & Mette N. Svendsen - 2021 - History and Philosophy of the Life Sciences 43 (1):1-22.
    Patient-derived xenografts are currently promoted as new translational models in precision oncology. PDXs are immunodeficient mice with human tumors that are used as surrogate models to represent specific types of cancer. By accounting for the genetic heterogeneity of cancer tumors, PDXs are hoped to provide more clinically relevant results in preclinical research. Further, in the function of so-called “mouse avatars”, PDXs are hoped to allow for patient-specific drug testing in real-time. This paper examines the circulation of knowledge and bodily material (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • From replica to instruments: animal models in biomedical research.Pierre-Luc Germain - 2014 - History and Philosophy of the Life Sciences 36 (1):114-128.
    The ways in which other animal species can be informative about human biology are not exhausted by the traditional picture of the animal model. In this paper, I propose to distinguish two roles which laboratory organisms can have in biomedical research. In the more traditional case, organisms act as surrogates for human beings, and as such are expected to be more manageable replicas of humans. However, animal models can inform us about human biology in a much less straightforward way, by (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Life Sciences for Philosophers and Philosophy for Life Scientists: What Should We Teach?Giovanni Boniolo & Raffaella Campaner - 2020 - Biological Theory 15 (1):1-11.
    Following recent debate on the relations between philosophy of science and the sciences, we wish to draw attention to some actual ways of training both young philosophers of science and young life scientists and clinicians. First, we recall a successful case of training philosophers of the life sciences in a strictly scientific environment. Second, after a brief review of the reasons why life scientists and clinicians are currently asking for more ethics, more methodology of science, and more philosophy of science (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • What mechanisms can’t do: Explanatory frameworks and the function of the p53 gene in molecular oncology.Alessandro Blasimme, Paolo Maugeri & Pierre-Luc Germain - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3):374-384.
    What has been called the new mechanistic philosophy conceives of mechanisms as the main providers of biological explanation. We draw on the characterization of the p53 gene in molecular oncology, to show that explaining a biological phenomenon implies instead a dynamic interaction between the mechanistic level—rendered at the appropriate degree of ontological resolution—and far more general explanatory tools that perform a fundamental epistemic role in the provision of biological explanations. We call such tools “explanatory frameworks”. They are called frameworks to (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Models and the mosaic of scientific knowledge. The case of immunology.Tudor M. Baetu - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 45 (1):49-56.
    A survey of models in immunology is conducted and distinct kinds of models are characterized based on whether models are material or conceptual, the distinctiveness of their epistemic purpose, and the criteria for evaluating the goodness of a model relative to its intended purpose. I argue that the diversity of models in interdisciplinary fields such as immunology reflects the fact that information about the phenomena of interest is gathered from different sources using multiple methods of investigation. To each model is (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Pluralists about Pluralism? Versions of Explanatory Pluralism in Psychiatry.Jeroen Van Bouwel - 2014 - In M. C. Galavotti, D. Dieks, W. J. Gonzalez, S. Hartmann, Th Uebel & M. Weber (eds.), New Directions in Philosophy of Science (The Philosophy of Science in a European Perspective Series). Springer. pp. 105-119.
    In this contribution, I comment on Raffaella Campaner’s defense of explanatory pluralism in psychiatry (in this volume). In her paper, Campaner focuses primarily on explanatory pluralism in contrast to explanatory reductionism. Furthermore, she distinguishes between pluralists who consider pluralism to be a temporary state on the one hand and pluralists who consider it to be a persisting state on the other hand. I suggest that it would be helpful to distinguish more than those two versions of pluralism – different understandings (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations