Switch to: References

Add citations

You must login to add citations.
  1. Background Independence, Diffeomorphism Invariance, and the Meaning of Coordinates.Oliver Pooley - 2016 - In Dennis Lehmkuhl, Gregor Schiemann & Erhard Scholz (eds.), Towards a Theory of Spacetime Theories. New York, NY: Birkhauser.
    Diffeomorphism invariance is sometimes taken to be a criterion of background independence. This claim is commonly accompanied by a second, that the genuine physical magnitudes (the ``observables'') of background-independent theories and those of background-dependent (non-diffeomorphism-invariant) theories are essentially different in nature. I argue against both claims. Background-dependent theories can be formulated in a diffeomorphism-invariant manner. This suggests that the nature of the physical magnitudes of relevantly analogous theories (one background free, the other background dependent) is essentially the same. The temptation (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   21 citations  
  • False Vacuum: Early Universe Cosmology and the Development of Inflation.Chris Smeenk - 2005 - In Eisenstaedt Jean & Knox A. J. (eds.), The Universe of General Relativity. Birkhauser. pp. 223-257.
  • A Conjecture on Einstein, the Independent Reality of Spacetime Coordinate Systems and the Disaster of 1913.John D. Norton - 1982 - In John Norton (ed.).
    Two fundamental errors led Einstein to reject generally covariant gravitational field equations for over two years as he was developing his general theory of relativity. The first is well known in the literature. It was the presumption that weak, static gravitational fields must be spatially flat and a corresponding assumption about his weak field equations. I conjecture that a second hitherto unrecognized error also defeated Einstein's efforts. The same error, months later, allowed the hole argument to convince Einstein that all (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Characterizability of Free Motion in Special Relativity.Udo Schelb - 2000 - Foundations of Physics 30 (6):867-892.
    The concept of forcefree motion is primitive, i.e., unexplained, in special relativity. The paper demonstrates a way to characterize it by “more primitive,” directly operationally interpreted notions. These are the worldlines of (more or less) pointlike, but non-quantum bodies and of light signals, clock parametrizations of the former kind of worldlines and the direction, in which an observer sees a light signal go out. Already at this general level one can define the “radar distance” and the “radar (initial) velocity” of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Did Einstein stumble? The debate over general covariance.John D. Norton - 1995 - Erkenntnis 42 (2):223 - 245.
    The objection that Einstein's principle of general covariance is not a relativity principle and has no physical content is reviewed. The principal escapes offered for Einstein's viewpoint are evaluated.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   22 citations  
  • Is there a relativistic thermodynamics? A case study of the meaning of special relativity.Chuang Liu - 1994 - Studies in History and Philosophy of Science Part A 25 (6):983-1004.
  • Gauge invariance, Cauchy problem, indeterminism, and symmetry breaking.Chuang Liu - 1996 - Philosophy of Science 63 (3):79.
    The concepts in the title refer to properties of physical theories and this paper investigates their nature and relations. The first three concepts, especially gauge invariance and indeterminism, have been widely discussed in connection to spacetime theories and the hole argument. Since the gauge invariance principle is at the crux of the issue, this paper aims at clarifying the nature of gauge invariance. I first explore the following chain of relations: gauge invariance $\Rightarrow $ the conservation laws $\Rightarrow $ the (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Modal Condition for the Beginning of the Universe.Daniel Linford - forthcoming - Erkenntnis:1-33.
    This paper considers two problems -- one in philosophy of religion and another in philosophy of physics -- and shows that the two problems have one solution. Some Christian philosophers have endorsed the views that (i) there was a first finitely long period of time, (ii) God is in time, and yet (iii) God did not have a beginning. If there was a first finitely long period of time and God is in time then there was a first finitely long (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Formal statement of the special principle of relativity.Marton Gomori & Laszlo E. Szabo - 2015 - Synthese 192 (7):1-24.
    While there is a longstanding discussion about the interpretation of the extended, general principle of relativity, there seems to be a consensus that the special principle of relativity is absolutely clear and unproblematic. However, a closer look at the literature on relativistic physics reveals a more confusing picture. There is a huge variety of, sometimes metaphoric, formulations of the relativity principle, and there are different, sometimes controversial, views on its actual content. The aim of this paper is to develop a (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Einstein and the Representation of Reality.Friedel Weinert - 2006 - Facta Philosophica 8 (1-2):229-252.
  • The constitutive a priori and the distinction between mathematical and physical possibility.Jonathan Everett - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):139-152.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Against ‘functional gravitational energy’: a critical note on functionalism, selective realism, and geometric objects and gravitational energy.Patrick M. Duerr - 2019 - Synthese 199 (S2):299-333.
    The present paper revisits the debate between realists about gravitational energy in GR and anti-realists/eliminativists. I re-assess the arguments underpinning Hoefer’s seminal eliminativist stance, and those of their realist detractors’ responses. A more circumspect reading of the former is proffered that discloses where the so far not fully appreciated, real challenges lie for realism about gravitational energy. I subsequently turn to Lam and Read’s recent proposals for such a realism. Their arguments are critically examined. Special attention is devoted to the (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • General-Relativistic Covariance.Neil Dewar - 2020 - Foundations of Physics 50 (4):294-318.
    This is an essay about general covariance, and what it says about spacetime structure. After outlining a version of the dynamical approach to spacetime theories, and how it struggles to deal with generally covariant theories, I argue that we should think about the symmetry structure of spacetime rather differently in generally-covariant theories compared to non-generally-covariant theories: namely, as a form of internal rather than external symmetry structure.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Einstein’s Principle of Equivalence and the Heuristic Significance of General Covariance.Joseph K. Cosgrove - 2021 - Foundations of Physics 51 (1):1-23.
    The philosophy of physics literature contains conflicting claims on the heuristic significance of general covariance. Some authors maintain that Einstein's general relativity distinguishes itself from other theories in that it must be generally covariant, for example, while others argue that general covariance is a physically vacuous and trivial requirement applicable to virtually any theory. Moreover, when general covariance is invested with heuristic significance, that significance as a rule is assigned to so-called “active” general covariance, underwritten by the principle of background (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • A star in the Minkowskian sky: Anisotropic special relativity.Tim Budden - 1997 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 28 (3):325-361.
  • A star in the minkowskian sky: Anisotropic special relativity.Tim Budden - 1997 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 28 (3):325-361.
  • On the meaning of the relativity principle and other symmetries.Harvey R. Brown & Roland Sypel - 1995 - International Studies in the Philosophy of Science 9 (3):235 – 253.
    Abstract The historical evolution of the principle of relativity from Galileo to Einstein is briefly traced, and purported difficulties with Einstein's formulation of the principle are examined and dismissed. This formulation is then compared to a precise version formulated recently in the geometrical language of spacetime theories. We claim that the recent version is both logically puzzling and fails to capture a crucial physical insight contained in the earlier formulations. The implications of this claim for the modern treatment of general (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • Geometry and motion.Gordon Belot - 2000 - British Journal for the Philosophy of Science 51 (4):561--95.
    I will discuss only one of the several entwined strands of the philosophy of space and time, the question of the relation between the nature of motion and the geometrical structure of the world.1 This topic has many of the virtues of the best philosophy of science. It is of long-standing philosophical interest and has a rich history of connections to problems of physics. It has loomed large in discussions of space and time among contemporary philosophers of science. Furthermore, there (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   37 citations  
  • Ephemeral Point-Events: Is There a Last Remnant of Physical Objectivity?Michele Vallisneri & Massimo Pauri - 2002 - Diálogos. Revista de Filosofía de la Universidad de Puerto Rico 37 (79):263-304.
    For the past two decades, Einstein's Hole Argument (which deals with the apparent indeterminateness of general relativity due to the general covariance of the field equations) and its resolution in terms of "Leibniz equivalence" (the statement that pseudo-Riemannian geometries related by active diffeomorphisms represent the same physical solution) have been the starting point for a lively philosophical debate on the objectivity of the point-events of space-time. It seems that Leibniz equivalence makes it impossible to consider the points of the space-time (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Leibniz Equivalence. On Leibniz's Influence on the Logical Empiricist Interpretation of General Relativity.Marco Giovanelli - unknown
    Einstein’s “point-coincidence argument'” as a response to the “hole argument” is usually considered as an expression of “Leibniz equivalence,” a restatement of indiscernibility in the sense of Leibniz. Through a historical-critical analysis of Logical Empiricists' interpretation of General Relativity, the paper attempts to show that this labeling is misleading. Logical Empiricists tried explicitly to understand the point-coincidence argument as an indiscernibility argument of the Leibnizian kind, such as those formulated in the 19th century debate about geometry, by authors such as (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Einstein's triumph over the spacetime coordinate system:.John D. Norton - unknown
    Einstein insisted throughout his life that the signal achievement of his general theory of relativity was its general covariance. How are we to reconcile this with the now common view that general covariance merely expresses a definition, our freedom to label events with any set of numbers we like? There is, I believe, a natural reading for Einstein's claims that does make perfect sense. It requires us to adopt a physical interpretation of relativity theory that is now no longer popular, (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations