Switch to: References

Add citations

You must login to add citations.
  1. Explanation versus Understanding: On Two Roles of Dynamical Systems Theory in Extended Cognition Research.Katarzyna Kuś & Krzysztof Wójtowicz - forthcoming - Foundations of Science:1-26.
    It is widely believed that mathematics carries a substantial part of the explanatory burden in science. However, mathematics can also play important heuristic roles of a different kind, being a source of new ideas and approaches, allowing us to build toy models, enhancing expressive power and providing fruitful conceptualizations. In this paper, we focus on the application of dynamical systems theory (DST) within the extended cognition (EC) field of cognitive science, considering this case study to be a good illustration of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Explanation in contexts of causal complexity : lessons from psychiatric genetics.Lauren N. Ross - 2023 - In William C. Bausman, Janella K. Baxter & Oliver M. Lean (eds.), From biological practice to scientific metaphysics. Minneapolis: University of Minnesota Press.
  • The Philosophy of Neuroscience.Bickle John, Mandik Peter & Anthony Landreth - 2012 - In Peter Adamson (ed.), Stanford Encyclopedia of Philosophy. Stanford Encyclopedia of Philosophy.
  • La deriva genética como fuerza evolutiva.Ariel Jonathan Roffé - 2015 - In J. Ahumada, N. Venturelli & S. Seno Chibeni (eds.), Selección de Trabajos del IX Encuentro AFHIC y las XXV Jornadas de Epistemología e Historia de la ciencia. pp. 615-626.
    Direct download  
     
    Export citation  
     
    Bookmark  
  • Models and Explanation.Alisa Bokulich - 2017 - In Magnani Lorenzo & Bertolotti Tommaso Wayne (eds.), Springer Handbook of Model-Based Science. Springer. pp. 103-118.
    Detailed examinations of scientific practice have revealed that the use of idealized models in the sciences is pervasive. These models play a central role in not only the investigation and prediction of phenomena, but in their received scientific explanations as well. This has led philosophers of science to begin revising the traditional philosophical accounts of scientific explanation in order to make sense of this practice. These new model-based accounts of scientific explanation, however, raise a number of key questions: Can the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Searching for Noncausal Explanations in a Sea of Causes.Alisa Bokulich - 2018 - In Alexander Reutlinger & Juha Saatsi (eds.), Explanation Beyond Causation: Philosophical Perspectives on Non-Causal Explanations. Oxford, United Kingdom: Oxford University Press.
    In the spirit of explanatory pluralism, this chapter argues that causal and noncausal explanations of a phenomenon are compatible, each being useful for bringing out different sorts of insights. After reviewing a model-based account of scientific explanation, which can accommodate causal and noncausal explanations alike, an important core conception of noncausal explanation is identified. This noncausal form of model-based explanation is illustrated using the example of how Earth scientists in a subfield known as aeolian geomorphology are explaining the formation of (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Structure of Sensorimotor Explanation.Alfredo Vernazzani - 2018 - Synthese (11):4527-4553.
    The sensorimotor theory of vision and visual consciousness is often described as a radical alternative to the computational and connectionist orthodoxy in the study of visual perception. However, it is far from clear whether the theory represents a significant departure from orthodox approaches or whether it is an enrichment of it. In this study, I tackle this issue by focusing on the explanatory structure of the sensorimotor theory. I argue that the standard formulation of the theory subscribes to the same (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Cautionary Contribution to the Philosophy of Explanation in the Cognitive Neurosciences.A. Nicolás Venturelli - 2016 - Minds and Machines 26 (3):259-285.
    I propose a cautionary assessment of the recent debate concerning the impact of the dynamical approach on philosophical accounts of scientific explanation in the cognitive sciences and, particularly, the cognitive neurosciences. I criticize the dominant mechanistic philosophy of explanation, pointing out a number of its negative consequences: In particular, that it doesn’t do justice to the field’s diversity and stage of development, and that it fosters misguided interpretations of dynamical models’ contribution. In order to support these arguments, I analyze a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Rethinking the explanatory power of dynamical models in cognitive science.Dingmar van Eck - 2018 - Philosophical Psychology 31 (8):1131-1161.
    ABSTRACTIn this paper I offer an interventionist perspective on the explanatory structure and explanatory power of dynamical models in cognitive science: I argue that some “pure” dynamical models – ones that do not refer to mechanisms at all – in cognitive science are “contextualized causal models” and that this explanatory structure gives such models genuine explanatory power. I contrast this view with several other perspectives on the explanatory power of “pure” dynamical models. One of the main results is that dynamical (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Beyond bioethics: the 5th International Philosophy of Medicine Roundtable.Jeremy R. Simon, Alex Broadbent & Fred Gifford - 2015 - Theoretical Medicine and Bioethics 36 (1):1-5.
    We are pleased to once again present to the readers of Theoretical Medicine and Bioethics papers from the Philosophy of Medicine Roundtable. Previous issues have followed the 3rd and 4th Roundtables, and the current issue presents a selection from the more than 20 papers presented at the 5th Philosophy of Medicine Roundtable, which took place in New York, at Columbia University, in November 2013. Like its predecessors, held in Birmingham, AL, Rotterdam, and San Sebastian, this Roundtable attracted speakers from around (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • The scope and limits of a mechanistic view of computational explanation.Maria Serban - 2015 - Synthese 192 (10):3371-3396.
    An increasing number of philosophers have promoted the idea that mechanism provides a fruitful framework for thinking about the explanatory contributions of computational approaches in cognitive neuroscience. For instance, Piccinini and Bahar :453–488, 2013) have recently argued that neural computation constitutes a sui generis category of physical computation which can play a genuine explanatory role in the context of investigating neural and cognitive processes. The core of their proposal is to conceive of computational explanations in cognitive neuroscience as a subspecies (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Dynamics of Neural Populations Capture the Laws of the Mind.Gregor Schöner - 2020 - Topics in Cognitive Science 12 (4):1257-1271.
    The dynamics of neural populations capture the laws of the mindThis paper focuses on the level of neural networks. Examining the case of recurrent neural networks, the paper argues that the dynamics of neural populations form a privileged level of explanation in cognitive science. According to Schöner, this level is privileged, because it enables cognitive scientists to discover the laws governing organisms’ cognition and behaviour.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Tracers in neuroscience: Causation, constraints, and connectivity.Lauren N. Ross - 2021 - Synthese 199 (1-2):4077-4095.
    This paper examines tracer techniques in neuroscience, which are used to identify neural connections in the brain and nervous system. These connections capture a type of “structural connectivity” that is expected to inform our understanding of the functional nature of these tissues. This is due to the fact that neural connectivity constrains the flow of signal propagation, which is a type of causal process in neurons. This work explores how tracers are used to identify causal information, what standards they are (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Multiple Realizability from a Causal Perspective.Lauren N. Ross - 2020 - Philosophy of Science 87 (4):640-662.
    This article examines the multiple realizability thesis within a causal framework. The beginnings of this framework are found in Elliott Sober’s “Multiple Realizability Argument against Reduction,”...
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Computing in the nick of time.J. Brendan Ritchie & Colin Klein - 2023 - Ratio 36 (3):169-179.
    The medium‐independence of computational descriptions has shaped common conceptions of computational explanation. So long as our goal is to explain how a system successfully carries out its computations, then we only need to describe the abstract series of operations that achieve the desired input–output mapping, however they may be implemented. It is argued that this abstract conception of computational explanation cannot be applied to so‐called real‐time computing systems, in which meeting temporal deadlines imposed by the systems with which a device (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Varieties of difference-makers: Considerations on chirimuuta’s approach to non-causal explanation in neuroscience.Abel Wajnerman Paz - 2019 - Manuscrito 42 (1):91-119.
    Causal approaches to explanation often assume that a model explains by describing features that make a difference regarding the phenomenon. Chirimuuta claims that this idea can be also used to understand non-causal explanation in computational neuroscience. She argues that mathematical principles that figure in efficient coding explanations are non-causal difference-makers. Although these principles cannot be causally altered, efficient coding models can be used to show how would the phenomenon change if the principles were modified in counterpossible situations. The problem is (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Dynamical causes.Russell Meyer - 2020 - Biology and Philosophy 35 (5):1-21.
    Mechanistic explanations are often said to explain because they reveal the causal structure of the world. Conversely, dynamical models supposedly lack explanatory power because they do not describe causal structure. The only way for dynamical models to produce causal explanations is via the 3M criterion: the model must be mapped onto a mechanism. This framing of the situation has become the received view around the viability of dynamical explanation. In this paper, I argue against this position and show that dynamical (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Structures, dynamics and mechanisms in neuroscience: an integrative account.Holger Lyre - 2018 - Synthese 195 (12):5141-5158.
    Proponents of mechanistic explanations have recently proclaimed that all explanations in the neurosciences appeal to mechanisms. The purpose of the paper is to critically assess this statement and to develop an integrative account that connects a large range of both mechanistic and dynamical explanations. I develop and defend four theses about the relationship between dynamical and mechanistic explanations: that dynamical explanations are structurally grounded, that they are multiply realizable, possess realizing mechanisms and provide a powerful top-down heuristic. Four examples shall (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Physical Theories are Prescriptions, not Descriptions.Shahin Kaveh - 2023 - Erkenntnis 88 (5):1825-1853.
    Virtually all philosophers of science have construed fundamental theories as descriptions of entities, properties, and/or structures. Call this the “descriptive-ontological” view. I argue that this view is incorrect, at least insofar as physical theories are concerned. I propose a novel construal of theories that I call the “prescriptive-dynamical” view. The central tenet of this view, roughly put, is that the _essential_ content of fundamental physical theories is a _prescription for interfacing with natural systems and translating local data into compact theoretical (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Why one model is never enough: a defense of explanatory holism.Hochstein Eric - 2017 - Biology and Philosophy 32 (6):1105-1125.
    Traditionally, a scientific model is thought to provide a good scientific explanation to the extent that it satisfies certain scientific goals that are thought to be constitutive of explanation. Problems arise when we realize that individual scientific models cannot simultaneously satisfy all the scientific goals typically associated with explanation. A given model’s ability to satisfy some goals must always come at the expense of satisfying others. This has resulted in philosophical disputes regarding which of these goals are in fact necessary (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • One mechanism, many models: a distributed theory of mechanistic explanation.Eric Hochstein - 2016 - Synthese 193 (5):1387-1407.
    There have been recent disagreements in the philosophy of neuroscience regarding which sorts of scientific models provide mechanistic explanations, and which do not. These disagreements often hinge on two commonly adopted, but conflicting, ways of understanding mechanistic explanations: what I call the “representation-as” account, and the “representation-of” account. In this paper, I argue that neither account does justice to neuroscientific practice. In their place, I offer a new alternative that can defuse some of these disagreements. I argue that individual models (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Foregrounding and backgrounding: a new interpretation of “levels” in science.Eric Hochstein - 2022 - European Journal for Philosophy of Science 12 (2):1-22.
    Talk of “levels” can be found throughout the sciences, from “levels of abstraction”, to “levels of organization”, to “levels of analysis”. This has led to substantial disagreement regarding the ontology of levels, and whether the various senses of levels each have genuine value and utility to scientific practice. In this paper, I propose a unified framework for thinking about levels in science which ties together the various ways in which levels are invoked in science, and which can overcome the problems (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  • Two challenges for a boolean approach to constitutive inference.Jens Harbecke - 2018 - European Journal for Philosophy of Science 9 (1):17.
    This paper discusses two challenges for a Boolean method for establishing constitutive regularity statements which, according to the regularity theory of mechanistic constitution, form the core of any mechanistic explanation in neuroscience. After presenting the regularity definition for the constitution relation and a methodology for constitutive inference, the paper discusses the problem of full variation of tested mechanistic factors and the problem of informational redundancy. A solution is offered for each problem. The first requires some adjustments to the original theory (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Constraint‐Based Reasoning for Search and Explanation: Strategies for Understanding Variation and Patterns in Biology.Sara Green & Nicholaos Jones - 2016 - Dialectica 70 (3):343-374.
    Life scientists increasingly rely upon abstraction-based modeling and reasoning strategies for understanding biological phenomena. We introduce the notion of constraint-based reasoning as a fruitful tool for conceptualizing some of these developments. One important role of mathematical abstractions is to impose formal constraints on a search space for possible hypotheses and thereby guide the search for plausible causal models. Formal constraints are, however, not only tools for biological explanations but can be explanatory by virtue of clarifying general dependency-relations and patterning between (...)
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The dynamical renaissance in neuroscience.Luis H. Favela - 2020 - Synthese 199 (1-2):2103-2127.
    Although there is a substantial philosophical literature on dynamical systems theory in the cognitive sciences, the same is not the case for neuroscience. This paper attempts to motivate increased discussion via a set of overlapping issues. The first aim is primarily historical and is to demonstrate that dynamical systems theory is currently experiencing a renaissance in neuroscience. Although dynamical concepts and methods are becoming increasingly popular in contemporary neuroscience, the general approach should not be viewed as something entirely new to (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dynamical systems theory in cognitive science and neuroscience.Luis H. Favela - 2020 - Philosophy Compass 15 (8):e12695.
    Dynamical systems theory (DST) is a branch of mathematics that assesses abstract or physical systems that change over time. It has a quantitative part (mathematical equations) and a related qualitative part (plotting equations in a state space). Nonlinear dynamical systems theory applies the same tools in research involving phenomena such as chaos and hysteresis. These approaches have provided different ways of investigating and understanding cognitive systems in cognitive science and neuroscience. The ‘dynamical hypothesis’ claims that cognition is and can be (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Are More Details Better? On the Norms of Completeness for Mechanistic Explanations.Carl F. Craver & David M. Kaplan - 2020 - British Journal for the Philosophy of Science 71 (1):287-319.
    Completeness is an important but misunderstood norm of explanation. It has recently been argued that mechanistic accounts of scientific explanation are committed to the thesis that models are complete only if they describe everything about a mechanism and, as a corollary, that incomplete models are always improved by adding more details. If so, mechanistic accounts are at odds with the obvious and important role of abstraction in scientific modelling. We respond to this characterization of the mechanist’s views about abstraction and (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   48 citations  
  • Explanation in Computational Neuroscience: Causal and Non-causal.M. Chirimuuta - 2018 - British Journal for the Philosophy of Science 69 (3):849-880.
    This article examines three candidate cases of non-causal explanation in computational neuroscience. I argue that there are instances of efficient coding explanation that are strongly analogous to examples of non-causal explanation in physics and biology, as presented by Batterman, Woodward, and Lange. By integrating Lange’s and Woodward’s accounts, I offer a new way to elucidate the distinction between causal and non-causal explanation, and to address concerns about the explanatory sufficiency of non-mechanistic models in neuroscience. I also use this framework to (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   34 citations  
  • Getting over Atomism: Functional Decomposition in Complex Neural Systems.Daniel C. Burnston - 2021 - British Journal for the Philosophy of Science 72 (3):743-772.
    Functional decomposition is an important goal in the life sciences, and is central to mechanistic explanation and explanatory reduction. A growing literature in philosophy of science, however, has challenged decomposition-based notions of explanation. ‘Holists’ posit that complex systems exhibit context-sensitivity, dynamic interaction, and network dependence, and that these properties undermine decomposition. They then infer from the failure of decomposition to the failure of mechanistic explanation and reduction. I argue that complexity, so construed, is only incompatible with one notion of decomposition, (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Minimal model explanations of cognition.Nick Brancazio & Russell Meyer - 2023 - European Journal for Philosophy of Science 13 (41):1-25.
    Active materials are self-propelled non-living entities which, in some circumstances, exhibit a number of cognitively interesting behaviors such as gradient-following, avoiding obstacles, signaling and group coordination. This has led to scientific and philosophical discussion of whether this may make them useful as minimal models of cognition (Hanczyc, 2014; McGivern, 2019). Batterman and Rice (2014) have argued that what makes a minimal model explanatory is that the model is ultimately in the same universality class as the target system, which underpins why (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark  
  • Mechanistic Abstraction.Worth Boone & Gualtiero Piccinini - 2016 - Philosophy of Science 83 (5):686-697.
    We provide an explicit taxonomy of legitimate kinds of abstraction within constitutive explanation. We argue that abstraction is an inherent aspect of adequate mechanistic explanation. Mechanistic explanations—even ideally complete ones—typically involve many kinds of abstraction and therefore do not require maximal detail. Some kinds of abstraction play the ontic role of identifying the specific complex components, subsets of causal powers, and organizational relations that produce a suitably general phenomenon. Therefore, abstract constitutive explanations are both legitimate and mechanistic.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  • Cognition as the sensitive management of an agent’s behavior.Mikio Akagi - 2022 - Philosophical Psychology 35 (5):718-741.
    Cognitive science is unusual in that cognitive scientists have dramatic disagreements about the extension of their object of study, cognition. This paper defends a novel analysis of the scientific concept of cognition: that cognition is the sensitive management of an agent’s behavior. This analysis is “modular,” so that its extension varies depending on how one interprets certain of its constituent terms. I argue that these variations correspond to extant disagreements between cognitive scientists. This correspondence is evidence that the proposed analysis (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • The philosophy of neuroscience.John Bickle, Pete Mandik & Anthony Landreth - 2006 - Stanford Encyclopedia of Philosophy.
    Over the past three decades, philosophy of science has grown increasingly “local.” Concerns have switched from general features of scientific practice to concepts, issues, and puzzles specific to particular disciplines. Philosophy of neuroscience is a natural result. This emerging area was also spurred by remarkable recent growth in the neurosciences. Cognitive and computational neuroscience continues to encroach upon issues traditionally addressed within the humanities, including the nature of consciousness, action, knowledge, and normativity. Empirical discoveries about brain structure and function suggest (...)
    Direct download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Cognition in Practice: Conceptual Development and Disagreement in Cognitive Science.Mikio Akagi - 2016 - Dissertation, University of Pittsburgh
    Cognitive science has been beset for thirty years by foundational disputes about the nature and extension of cognition—e.g. whether cognition is necessarily representational, whether cognitive processes extend outside the brain or body, and whether plants or microbes have them. Whereas previous philosophical work aimed to settle these disputes, I aim to understand what conception of cognition scientists could share given that they disagree so fundamentally. To this end, I develop a number of variations on traditional conceptual explication, and defend a (...)
    Direct download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Integrating Philosophy of Understanding with the Cognitive Sciences.Kareem Khalifa, Farhan Islam, J. P. Gamboa, Daniel Wilkenfeld & Daniel Kostić - 2022 - Frontiers in Systems Neuroscience 16.
    We provide two programmatic frameworks for integrating philosophical research on understanding with complementary work in computer science, psychology, and neuroscience. First, philosophical theories of understanding have consequences about how agents should reason if they are to understand that can then be evaluated empirically by their concordance with findings in scientific studies of reasoning. Second, these studies use a multitude of explanations, and a philosophical theory of understanding is well suited to integrating these explanations in illuminating ways.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations