Skip to main content
Log in

Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses,  in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, interference and superposition, identity and individuality in the light of this new interpretation, and we put forward a specific explanation and understanding of these aspects. The basic hypothesis of our framework gives rise in a natural way to a Heisenberg uncertainty principle which introduces an understanding of the general situation of ‘the one and the many’ in quantum physics. A specific view on macro and micro different from the common one follows from the basic hypothesis and leads to an analysis of Schrödinger’s Cat paradox and the measurement problem different from the existing ones. We reflect about the influence of this new quantum interpretation and explanatory framework on the global nature and evolutionary aspects of the world and human worldviews, and point out potential explanations for specific situations, such as the generation problem in particle physics, the confinement of quarks and the existence of dark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achinstein P. (1991) Particles and waves: Historical essays in the philosophy of science. Oxford University Press, Oxford UK

    Google Scholar 

  • Aerts D. (1982) Example of a macroscopical situation that violates Bell inequalities. Lettere al Nuovo Cimento 34: 107–111

    Article  Google Scholar 

  • Aerts D. (1985a) The physical origin of the EPR paradox and how to violate Bell inequalities by macroscopical systems. In: Lathi P., Mittelstaedt P. (eds) Symposium on the foundations of modern physics: 50 years of the Einstein-Podolsky-Rosen Gedankenexperiment. World Scientific, Singapore, pp 305–320

    Google Scholar 

  • Aerts D. (1985b) A possible explanation for the probabilities of quantum mechanics and a macroscopical situation that violates Bell inequalities. In: Mittelstaedt P., Stachow E.W. (eds) Recent developments in quantum logic, Grundlagen der Exacten Naturwissenschaften, vol. 6, Wissenschaftverlag. Mannheim, Bibliographisches Institut, pp 235–251

    Google Scholar 

  • Aerts D. (1986) A possible explanation for the probabilities of quantum mechanics. Journal of Mathematical Physics 27: 202–210

    Article  Google Scholar 

  • Aerts D. (1991) A mechanistic classical laboratory situation violating the Bell inequalities with \({2\sqrt{2}}\) , exactly ‘in the same way’ as its violations by the EPR experiments. Helvetica Physica Acta 64: 1–23

    Google Scholar 

  • Aerts D. (1992) The construction of reality and its influence on the understanding of quantum structures. International Journal of Theoretical Physics 31: 1815–1837

    Article  Google Scholar 

  • Aerts D. (1994) Quantum structures, separated physical entities and probability. Foundations of Physics 24: 1227–1259

    Article  Google Scholar 

  • Aerts D. (1995) Quantum structures: An attempt to explain their appearance in nature. International Journal of Theoretical Physics 34: 1165–1186

    Article  Google Scholar 

  • Aerts D. (1998) entity and modern physics: The creation-discovery view of reality. In: Castellani E. (eds) Interpreting bodies: Classical and quantum objects in modern physics. Princeton University Press, Princeton, pp 223–257

    Google Scholar 

  • Aerts D. (1998b) The hidden measurement formalism: What can be explained and where paradoxes remain. International Journal of Theoretical Physics 37: 291–304

    Article  Google Scholar 

  • Aerts D. (1999) The stuff the world is made of: Physics and reality. In: Aerts D., Broekaert J., Mathijs E. (eds) Einstein meets Magritte: An interdisciplinary reflection. Kluwer Academic, Dordrecht, pp 129–183

    Google Scholar 

  • Aerts D. (2005) Towards a new democracy: Consensus through quantum parliament. In: Aerts D., ’Hooghe B.D, Note N. (eds) Worldviews science and us Redemarcating knowledge and its social and ethical implications. World Scientific, Singapore, pp 189–202

    Chapter  Google Scholar 

  • Aerts, D. (2007a). Quantum interference and superposition in cognition: Development of a theory for the disjunction of concepts. Archive reference and link: http://uk.arxiv.org/abs/0705.0975.

  • Aerts, D. (2007b). General quantum modeling of combining concepts: A quantum field model in Fock space. Archive reference and link: http://uk.arxiv.org/abs/0705.1740.

  • Aerts, D. (2009). Quantum structure in cognition. Journal of Mathematical Psychology, 53. doi:10.1016/j.jmp.2009.04.005

  • Aerts, D. (2010a). Interpreting quantum particles as conceptual entities. International Journal of Theoretical Physics (accepted).

  • Aerts, D. (2010b). Quantum interference in cognition and double-slit graphical representations. In preparation.

  • Aerts D., Aerts S. (1994) Applications of quantum statistics in psychological studies of decision processes. Foundations of Science 1: 85–97

    Google Scholar 

  • Aerts D., Aerts S., Broekaert J., Gabora L. (2000) The violation of Bell inequalities in the macroworld. Foundations of Physics 30: 1387–1414

    Article  Google Scholar 

  • Aerts D., Aerts S., Gabora L. (2009) Experimental evidence for quantum structure in cognition. In: Bruza P., Sofge D., Lawless W., Rijsbergen K., Klusch M. (eds) Proceedings of the third quantum interaction symposium, lecture notes in artificial intelligence Vol 5494. Springer, Berlin, pp 59–70

    Google Scholar 

  • Aerts D., Czachor M. (2004) Quantum aspects of semantic analysis and symbolic artificial intelligence. Journal of Physics A-Mathematical and General 37: L123–L32

    Article  Google Scholar 

  • Aerts D., Czachor M., D’Hooghe B. (2006) Towards a quantum evolutionary scheme: violating Bell’s inequalities in language. In: Gontier N., Van Bendegem J.P., Aerts D. (eds) Evolutionary epistemology, language and culture—A non adaptationist systems theoretical approach. [Theory and decision library series A: Philosophy and methodology of the social sciences. Series editor: Julian Nida-Ruemelin]. Springer, Dordrecht

    Google Scholar 

  • Aerts D., D’Hondt E., D’Hooghe B. (2005) A geometrical representation of entanglement as internal constraint. International Journal of Theoretical Physics 44: 897–907

    Article  Google Scholar 

  • Aerts D., D’Hooghe B. (2009) Classical logical versus quantum conceptual thought: Examples in economy, decision theory and concept theory. In: Bruza P., Sofge D., Lawless W., Rijsbergen K., Klusch M. (eds) Proceedings of the third quantum interaction symposium, lecture notes in artificial intelligence Vol 5494. Springer, Berlin, pp 128–142

    Google Scholar 

  • Aerts D., Gabora L. (2005a) A theory of concepts and their combinations I: The structure of the sets of contexts and properties. Kybernetes 34: 167–191

    Article  Google Scholar 

  • Aerts D., Gabora L. (2005b) A theory of concepts and their combinations II: A Hilbert space representation. Kybernetes 34: 192–221

    Article  Google Scholar 

  • Albrecht A. (1994) Some remarks on quantum coherence. Journal of Modern Optics 41: 2467–2482

    Article  Google Scholar 

  • Anderson M. H., Ensher J. R., Matthews M. R., Wieman C. E., Cornell E. A. (1995) Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269: 198–201

    Article  Google Scholar 

  • Arafat, S., & van Rijsbergen, C. J. (2007). Quantum theory and the nature of search. Proceedings of the AAAI quantum interaction symposium (pp. 114–122).

  • Aspect A., Grangier P., Roger G. (1981) Experimental tests of realistic local theories via Bell’s theorem. Physical Review Letters 47: 460–463

    Article  Google Scholar 

  • Baez J., Ody M., Richter B. (1995) Topological aspects of spin and statistics of solitons in nonlinear sigma-models. Journal of Mathematical Physics 36: 108–131

    Google Scholar 

  • Bell J. S. (1964) On the Einstein-Podolsky-Rosen paradox. Physics 1: 195–200

    Google Scholar 

  • Blei D. M., Ng A. N., Michael I. J. (2003) Latent Dirichlet allocation. Journal of Machine Learning Research 3: 993–1022

    Article  Google Scholar 

  • Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of hidden variables I&II. Physical Review, 85, 166–179, 180–193

    Google Scholar 

  • Bohr N. (1928) The quantum postulate and the recent development of atomic theory. Nature 121: 580–590

    Article  Google Scholar 

  • Bogoliubov N., Logunov A. A., Oksak A. I., Todorov I. T. (1990) General principles of quantum field theory. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bromley D. A., Kuehner J. A., Almqvist E. (1961) Elastic scattering of identical spin-zero nuclei. Physical Review 123: 878–893

    Article  Google Scholar 

  • Busemeyer J.R., Matthew M., Wang Z. (2006) A quantum information processing theory explanation of disjunction effects. In: Sun R., Miyake N. (eds) Proceedings of 28th annual conference of the cognitive science society & the 5th international conference of cognitive science. Mahwah, NJ, pp 131–135

    Google Scholar 

  • Busemeyer J. R., Wang Z., Townsend J. T. (2006b) Quantum dynamics of human decision making. Journal of Mathematical Psychology 50: 220–241

    Article  Google Scholar 

  • Camino F. E., Zhou Wei, Goldman V. J. (2005) Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Physical Review B 72: 075342

    Article  Google Scholar 

  • Castellani E. (1998) Interpreting bodies: Classical and quantum objects in modern physics. Princeton. Princeton University Press

    Google Scholar 

  • Chandler D. (2002) Semiotics: The basics. Londen, Routledge

    Google Scholar 

  • Clauser J. F., Horne M. A., Shimony A., Holt R. A. (1969) Proposed experiment to test local hidden-variable theories. Physical Review Letters 23: 880–884

    Article  Google Scholar 

  • Davis K. B., Mewes M. O., Andrews M. R., van Druten N. J., Durfee D. S., Kurn D. M., Ketterle W. (1995) Bose-Einstein condensation in a gas of sodium atoms. Physical Review Letters 75: 3969–3973

    Article  Google Scholar 

  • de Broglie L. (1923) Ondes et quanta. Comptes Rendus 177: 507–510

    Google Scholar 

  • de Broglie, L. (1928). La nouvelle dynamique des quanta. In Proceedings of the solvay conference 1928. Electrons et Photons (pp. 105–132)

  • de Kunder, M. (2009). The size of the World Wide Web. Available at: http://www.worldwidewebsize.com/. Accessed 15 Sep. 2009.

  • Deerwester S., Dumais S. T., Furnas G. W., Landauer T. K., Harshman R. (1990) Indexing by latent semantic analysis. Journal of the American Society for Information Science 41: 391–407

    Article  Google Scholar 

  • Dieks D., Versteegh M. A. M. (2008) Identical quantum particles and weak discernibility. Foundations of Physics 38: 923–934

    Article  Google Scholar 

  • Duck I., Sudarshan E. C. G. (1998) Toward an understanding of the spin-statistics theorem. American Journal of Physics 66: 284–303

    Article  Google Scholar 

  • Dyson F. J., Lenard A. (1967) Stability of matter I. Journal of Mathematical Physics 8: 423–434

    Article  Google Scholar 

  • Einstein A. (1905) Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 17: 132–148

    Article  Google Scholar 

  • Einstein A., Podolsky B., Rosen N. (1935) Can quantum-mechanical description of physical reality be considered complete?. Physical Review 47: 777–780

    Article  Google Scholar 

  • Feynman R. P. (1961) Quantum electrodynamics. Basic Books, New York

    Google Scholar 

  • Feynman R. P. (1967) The character of physical law, chap. 6. MIT-Press, Cambridge, Massachusetts

    Google Scholar 

  • Feynman R. P., Leighton R. B., Sands M. (1963) The Feynman lecture on physics, vol. 3: Quantum mechanics. Addison-Wesley, New York

    Google Scholar 

  • Feynman R. P., Weinberg S. (1987) Elementary particles and the laws of physics: The 1986 Dirac memorial lectures. Cambridge University Press, Cambridge

    Google Scholar 

  • Fierz M. (1939) . Helvetica Physica Acta 12: 3–37

    Article  Google Scholar 

  • French S., Krause D. (2006) Identity in physics: A historical, philosophical and formal analysis. Oxford University Press, Oxford

    Google Scholar 

  • Franco, R. (2009). The conjunction fallacy and interference effects. Journal of Mathematical Psychology, 53. doi:10.1016/j.jmp.2009.02.002

  • Fresnel, A. J. (1819). Mémoire sur la diffraction de la lumière. Annales de Chimie et de Physique XI, 246–296, 337–378.

  • Gabora L., Aerts D. (2002) Contextualizing concepts using a mathematical generalization of the quantum formalism. Journal of Experimental and Theoretical Artificial Intelligence 14: 327–358

    Article  Google Scholar 

  • Griffiths T. L., Steyvers M. (2002). Prediction and semantic association. In Advances in neural information processing systems (Vol. 15, pp. 11–18). Massachusetts: MIT Press.

  • Hampton J. A. (1988) Disjunction of natural concepts. Memory & Cognition 16: 579–591

    Google Scholar 

  • Heisenberg W. (1925) Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift Für Physik 33: 879–893

    Article  Google Scholar 

  • Heisenberg W. (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift Für Physik 43: 172–198

    Article  Google Scholar 

  • Hofmann T. (1999). Probabilistic latent semantic analysis. Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval (pp. 50–57). Berkeley, California

  • Huygens, C. (1678). Traité de la Lumiere. Reprinted in part In H. Crew (Ed.) (1990). The wave theory of light. New York.

  • Khrennikov, A. Y., & Haven, E. (2009). Quantum mechanics and violations of the sure-thing principle: The use of probability interference and other concepts. Journal of Mathematical Psychology, 53. doi:10.1016/j.jmp.2009.01.007

  • Kim Y.-H., Yu R., Kulik S. P., Shih Y. H., Scully M. O. (2000) Delayed choice quantum eraser. Physical Review Letters 84: 1–5

    Article  Google Scholar 

  • Landauer T. K., Dumais S. T. (1997) A solution of Plato’s problem: The latent semantic analysis theory of the acquisition, induction and representation of knowledge. Psychological Review 104: 211–240

    Article  Google Scholar 

  • Landauer T. K., Foltz P. W., Laham D. (1998) Introduction to latent semantic analysis. Discourse Processes 25: 259–284

    Article  Google Scholar 

  • Leinaas J. M., Myrheim J. (1977) On the theory of identical particles. Il Nuovo Cimento B 37: 1–23

    Article  Google Scholar 

  • Lenard A., Dyson F. J. (1968) Stability of matter. II. Journal of Mathematical Physics 9: 698–711

    Article  Google Scholar 

  • Lieb E. H. (1976) The stability of matter. Reviews of Modern Physics 48: 553–569

    Article  Google Scholar 

  • Lieb E. H. (1979) Why matter is stable. Chinese Journal of Physics 17: 49–62

    Google Scholar 

  • Lund K., Burgess C. (1996) Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments and Computers 28: 203–208

    Google Scholar 

  • Maxwell J. C. (1865) A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London 155: 459–512

    Article  Google Scholar 

  • Muthaporn C., Manoukian E. B. (2004) Instability of bosonic matter in all dimensions. Physics Letters A 321: 152–154

    Article  Google Scholar 

  • Newton I. (1704) Opticks or, a Treatise of the Reflections, Refractions, Inflexions and Colours of Light. Printed for William Innys at the West-End of St Paul’s, London

    Google Scholar 

  • O’Hara P. (2003) Rotational invariance and the spin-statistics theorem. Foundations of Physics 33: 1349–1368

    Article  Google Scholar 

  • Pauli W. (1940) The connection between spin and statistics. Physical Review 58: 716–722

    Article  Google Scholar 

  • Pauli W. (1950) On the connection between spin and statistics. Progress of Theoretical Physics 5: 526–543

    Article  Google Scholar 

  • Planck M. (1901) Über das Gesetz der Energieverteilung im Normalspektrum. Annalen der Physik 4: 553–563

    Article  Google Scholar 

  • Pothos E. M., Busemeyer J. R. (2009) A quantum probability explanation for violations of ‘rational’ decision theory. Proceedings of the Royal Society B 276: 2171–2178

    Article  Google Scholar 

  • Salton G., Wong A., Yang C. S. (1975) A vector space model for automatic indexing. Communications of the ACM 18: 613–620

    Article  Google Scholar 

  • Schrödinger E. (1926a) Quantizierung als Eigenwertproblem (Erste Mitteilung). Annalen der Physik 79: 361–376

    Article  Google Scholar 

  • Schrödinger E. (1926b) Über das Verhältnis der Heisenberg Born Jordanischen Quantenmechanik zu der meinen. Annalen der Physik 79: 734–756

    Article  Google Scholar 

  • Scully M. O., Drühl K. (1982) Quantum eraser: A proposed photon correlation experiment concerning observation and delayed choice in quantum mechanics. Physical Review A 25: 2208–2213

    Article  Google Scholar 

  • Streater R. F., Wightman A. S. (1989) PCT Spin and statistics and all that. Addison-Wesley, New York

    Google Scholar 

  • Tittel W., Brendel J., Gisin B., Herzog T., Zbinden H., Gisin N. (1998) Experimental demonstration of quantum correlations over more than 10 km. Physical Review A 57: 3229–3232

    Article  Google Scholar 

  • Van Fraassen B. C. (1995) Quantum mechanics an empiricist view. Oxford University Press, Oxford

    Google Scholar 

  • Van Rijsbergen K. (2004) The geometry of information retrieval. Cambridge University Press, Cambridge UK

    Google Scholar 

  • von Neumann J. (1932) Mathematical foundations of quantum mechanics. Princeton University Press, Princeton New Jersey

    Google Scholar 

  • Walborn S. P., Terra Cunha M. O., Pádua S., Monken C. H. (2002) Double-slit quantum eraser. Physical Review A 65: 033818

    Article  Google Scholar 

  • Weihs G., Jennewein T., Simon C., Weinfurter H., Zeilinger A. (1998) Violation of Bell’s inequality under strict Einstein locality conditions. Physical Review Letters 81: 5039–5043

    Article  Google Scholar 

  • Weinberg S. (1995) The quantum theory of fields. Cambridge University Press, Cambridge

    Google Scholar 

  • Widdows, D. (2003). Orthogonal negation in vector spaces for modelling word-meanings and document retrieval. In Proceedings of the 41st annual meeting of the association for computational linguistics (pp. 136–143). Sapporo, Japan, July 7–12.

  • Widdows D. (2006) Geometry and meaning. CSLI Publications, Stanford

    Google Scholar 

  • Widdows D. (2008) Semantic vector products: Some initial investigations. Proceedings of the second AAAI symposium on quantum interaction. College Publications, London

    Google Scholar 

  • Widdows D. (2009) Semantic vector combinations and the synoptic gospels. Lecture Notes In Artificial Intelligence 5494: 251–265

    Google Scholar 

  • Widdows, D., & Peters, S. (2003). Word vectors and quantum logic: Experiments with negation and disjunction. In Mathematics of language (Vol. 8, pp. 141–154). Indiana: Bloomington.

  • Wilczek F. (1982) Quantum mechanics of fractional spin particles. Physical Review Letters 49: 957–959

    Article  Google Scholar 

  • Young, T. (1802). On the theory of light and colours. Philosophical Transactions of the Royal Society, 92, 12–48. Reprinted in part in H. Crew (Ed.) (1990). The wave theory of light. New York.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diederik Aerts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aerts, D. Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory. Found Sci 14, 361–411 (2009). https://doi.org/10.1007/s10699-009-9166-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-009-9166-y

Keywords

Navigation