Skip to main content
Log in

Predictive Power of “A Minima” Models in Biology

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Many apparently complex mechanisms in biology, especially in embryology and molecular biology, can be explained easily by reasoning at the level of the “efficient cause” of the observed phenomenology: the mechanism can then be explained by a simple geometrical argument or a variational principle, leading to the solution of an optimization problem, for example, via the co-existence of a minimization and a maximization problem (a min–max principle). Passing from a microscopic (or cellular) level (optimal min–max solution of the simple mechanistic system) to the macroscopic level often involves an averaging effect (linked to the repetition of a large number of such microscopic systems with possible random choice of the parameters of each of them) that gives birth to a global functional feature (e.g. at the tissue level). We will illustrate these general principles by building in four different domains of application “a minima” models and showing the main properties of their solutions: (1) extraction of a minimal RNA structure functioning as the first “peptidic machine,” a kind of ancestral ribosome; (2) study of a genetic regulatory network of Drosophila centred on Engrailed gene and expressing successively two genes inside a limit cycle; (3) study of a genetic network regulating neural activity and proliferation in mammals; and (4) study of a simple geometric model of epiboly in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbas L, Demongeot J, Glade N (2009) Synchrony in reaction-diffusion models of morphogenesis: applications to curvature-dependent proliferation and zero-diffusion front waves. Phil Trans Royal Soc A 367:4829–4862

    Article  Google Scholar 

  • Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6:635–645

    Article  Google Scholar 

  • Almeida L, Bagnerini P, Habbal A, Noselli S, Serman F (2009) Tissue repair modeling, singularities in nonlinear evolution phenomena and applications. In: Novaga M, Orlandi G (eds) CRM series. Scuola Normale Superiore, Pisa, pp 27–46

    Google Scholar 

  • Almeida L, Bagnerini P, Habbal A, Noselli S, Serman F (2011) A mathematical model for dorsal closure. J Theor Biol 268:105–119

    Article  Google Scholar 

  • Ben Amor L, Cadau S, Elena A, Dhouailly D, Demongeot J (2009) Regulatory networks analysis: robustness in biological regulatory networks. In: AINA’ 09 & BLSMC’ 09, IEEE Press, Piscataway, pp 224–229

  • Beretta CA, Brinkmann I, Carl M (2011) All four zebrafish Wnt7 genes are expressed during early brain development. Gene Expr Patterns 11:277–284

    Article  Google Scholar 

  • Cheng JC, Miller AL, Webb SE (2004) Organization and function of microfilaments during late epiboly in zebrafish embryos. Dev Dyn 231:313–323

    Article  Google Scholar 

  • Cinquin O, Demongeot J (2002) Positive and negative feedback: striking a balance between necessary antagonists. J Theor Biol 216:229–241

    Article  Google Scholar 

  • Demongeot J (2009) Biological boundaries and biological age. Acta Biotheor 57:397–419

    Article  Google Scholar 

  • Demongeot J, Moreira A (2007) A circular RNA at the origin of life. J Theor Biol 249:314–324

    Article  Google Scholar 

  • Demongeot J, Elena A, Weil G (2006) Potential-Hamiltonian decomposition of cellular automata. Application to degeneracy of genetic code and cyclic codes III. Comptes Rendus Biologies 329:953–962

    Article  Google Scholar 

  • Demongeot J, Glade N, Moreira A (2008) Evolution and RNA relics. A systems biology view. Acta Biotheoretica 56:5–25

    Article  Google Scholar 

  • Demongeot J, Glade N, Moreira A, Vial L (2009a) RNA relics and origin of life. Int J Mol Sci 10:3420–3441

    Article  Google Scholar 

  • Demongeot J, Ben Amor H, Gillois P, Noual M, Sené S (2009b) Robustness of regulatory networks. A generic approach with applications at different levels: physiologic, metabolic and genetic. Int J Mol Sci 10:4437–4473

    Article  Google Scholar 

  • Demongeot J, Elena A, Noual M, Sené S, Thuderoz F (2011a) “Immunetworks” I, attractors and intersecting circuits. J Theor Biol 280:19–33

    Article  Google Scholar 

  • Demongeot J, Elena A, Noual M, Sené S (2011b) Random boolean networks and attractors of their intersecting circuits. In: IEEE AINA’ 11 & BLSMC’ 11, IEEE Proceedings, Piscataway, pp 483–487

  • Demongeot J, Noual M, Sené S ( 2012) Combinatorics of boolean automata circuits dynamics. Discrete Appl Math 160:398–415

    Google Scholar 

  • Di Giulio M (1989a) Some aspects of the organization and evolution of the genetic code. J Mol Evol 29:191–201

    Article  Google Scholar 

  • Di Giulio M (1989b) The extension reached by the minimization of the polarity distances during the evolution of the genetic code. J Mol Evol 29:288–293

    Article  Google Scholar 

  • Fjose A, Njølstad PR, Nornes S, Molven A, Krauss S (1992) Structure and early embryonic expression of the zebrafish engrailed-2 gene. Mech Dev 39:51–62

    Article  Google Scholar 

  • Gettings M, Serman F, Rousset FR, Bagnerini P, Almeida L, Noselli S (2010) JNK signaling controls remodelling of the segment boundary through cell reprogramming during drosophila morphogenesis. PLoS Biol 8:e1000390

    Article  Google Scholar 

  • Goodarzi H, Najafabadi HS, Nejad HA, Torabi N (2005) The impact of including tRNA content on the optimality of the genetic code. Bull Math Biol 67:1355–1368

    Article  Google Scholar 

  • Heo JS, Lee SH, Han HJ (2008) Regulation of DNA synthesis in mouse embryonic stem cells by transforming growth factor-α: involvement of the PI3-K/Akt and Notch/Wnt signaling pathways. Growth Factors 26:104–116

    Article  Google Scholar 

  • Hermeking H, Eick D (1994) Mediation of c-Myc-induced apoptosis by p53. Science 265:2091–2093

    Article  Google Scholar 

  • Higgs PG, Pudritz RE (2009) A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology 9:483–490

    Article  Google Scholar 

  • Holloway BA, de la Torre Gomez, Canny S, Ye Y, Slusarski DC, Freisinger CM, Dosch R, Chou MM, Wagner DS, Mullins MC (2009) A novel role for MAPKAPK2 in morphogenesis during zebrafish development. PLoS Genet 5:e1000413

    Article  Google Scholar 

  • Hutson MS, Tokutake Y, Chang MS, Bloor JW, Venakides S, Kiehart DP, Edwards GS (2003) Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300:145–149

    Article  Google Scholar 

  • Ivanov VN, Hei TK (2005) Combined treatment with EGFR inhibitors and arsenite upregulated apoptosis in human EGFR-positive melanomas: a role of suppression of the PI3K-AKT pathway. Oncogene 24:616–626

    Article  Google Scholar 

  • Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The miller volcanic spark discharge experiment. Science 322:404

    Article  Google Scholar 

  • Kohn KW (1999) Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 10:2703–2734

    Google Scholar 

  • Köppen M, Fernández BG, Carvalho L, Jacinto A, Heisenberg CP (2006) Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila. Development 133:2671–2681

    Article  Google Scholar 

  • Krauss S, Korzh V, Fjose A, Johansen T (1992) Expression of four zebrafish wnt-related genes during embryogenesis. Development 116:249–259

    Google Scholar 

  • Lachnit M, Kur E, Driever W (2008) Alterations of the cytoskeleton in all three embryonic lineages contribute to the epiboly defect of Pou5f1/Oct4 deficient MZspg zebrafish embryos. Dev Biol 315(1):1–17

    Article  Google Scholar 

  • Lee WJ, Kim SH, Kim YS, Han SJ, Park KS, Ryu JH, Hur MW, Choi KY (2000) Inhibition of mitogen-activated protein kinase by a Drosophila dual-specific phosphatase. Biochem J 349:821–828

    Google Scholar 

  • Lehmann J, Cibils M, Libchaber A (2009) Emergence of a code in the polymerization of amino acids along RNA templates. PLoS One 4:e5773

    Article  Google Scholar 

  • Lepage SE, Bruce AE (2010) Zebrafish epiboly: mechanics and mechanisms. Int J Dev Biol 54:1213–1228

    Article  Google Scholar 

  • Lewis JL, Bonner J, Modrell M, Ragland JW, Randall T, Dorsky R, Raible DW (2004) Reiterated Wnt signaling during zebrafish neural crest development. Development 131:1299–1308

    Article  Google Scholar 

  • Littleton JT, Ganetzky B (2000) Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26:35–43

    Article  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  Google Scholar 

  • Mantrova EY, Hsu T (1998) Down-regulation of transcription factor CF2 by Drosophila Ras/MAP kinase signaling in oogenesis: cytoplasmic retention and degradation. Genes Dev 12:1166–1175

    Article  Google Scholar 

  • Martin AC (2010) Pulsation and stabilization: contractile forces that underlie morphogenesis. Dev Biol 341:114–125

    Article  Google Scholar 

  • Martin P, Parkhurst SM (2004) Parallels between tissue repair and embryo morphogenesis. Development 131:3021–3034

    Article  Google Scholar 

  • McEwen DG, Peifer M (2005) Puckered, a Drosophila MAPK phosphatase, ensures cell viability by antagonizing JNK-induced apoptosis. Development 132:3935–3946

    Article  Google Scholar 

  • Michon F, Forest L, Collomb E, Demongeot J, Dhouailly D (2008) BMP-2 and BMP-7 play antagonistic roles in feather induction. Development 135:2797–2805

    Article  Google Scholar 

  • Miller SL (1987) Which organic compounds could have occurred on the prebiotic earth. Cold Spring Harbor Symp Quant Biol 52:7–27

    Article  Google Scholar 

  • Moreau de Maupertuis PL (1746) Les lois du mouvement et du repos, déduites d’un principe de métaphysique. Königlich Preußische Sozietät der Wissenschaften 2:267–294

  • Nagata D, Suzuki E, Nishimatsu H, Yoshizumi M, Mano T, Walsh K, Sata M, Kakoki M, Goto A, Omata M, Hirata Y (2000) Cyclin A downregulation and p21cip1 upregulation correlate with GATA-6–induced growth arrest in glomerular mesangial cells. Circ Res 87:699–704

    Google Scholar 

  • Noual M (2010) Dynamics in parallel of double boolean automata circuits. ArXiv, 1011.3930v2

  • Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2:764–776

    Article  Google Scholar 

  • Pikkarainen S, Tokola H, Kerkelä R, Ruskoaho H (2011) GATA transcription factors in the developing and adult heart. Cardiovasc Res 63:196–207

    Article  Google Scholar 

  • Richard A (2011) Local negative circuits and fixed points in non-expansive Boolean networks. Discrete Appl Math 159:1085–1093

    Article  Google Scholar 

  • Saenz-Robles MT, Maschat F, Tabata T, Scott MP, Kornberg TB (1995) Selection and characterization of sequences with high affinity for engrailed proteins of Drosophila. Mech Dev 53:185–195

    Article  Google Scholar 

  • Salinas PC, Zou Y (2008) Wnt signaling in neural circuit assembly. Annu Rev Neurosci 31:339–358

    Article  Google Scholar 

  • Siddiqui M, Sheikh H, Tran C, Bruce AE (2010) The tight junction component Claudin E is required for zebrafish epiboly. Dev Dyn 239:715–722

    Article  Google Scholar 

  • Siegler MVS, Jia XX (1999) Engrailed negatively regulates the expression of cell adhesion molecules connectin and neuroglian in embryonic Drosophila nervous system. Neuron 22:265–276

    Article  Google Scholar 

  • Solnica-Krezel L (2006) Gastrulation in zebrafish—all just about adhesion? Curr Opin Genet Dev 16:433–441

    Article  Google Scholar 

  • Tonnelier A, Meignen S, Bosch H, Demongeot J (1999) Synchronization and desynchronization of neural oscillators: comparison of two models. Neural Netw 12:1213–1228

    Article  Google Scholar 

  • Trifonov E (2000) Consensus temporal order of amino-acids and evolution of the triplet code. Gene 261:139–151

    Article  Google Scholar 

  • Vickers ER, Sharrocks AD (2002) The use of inducible engrailed fusion proteins to study the cellular functions of eukaryotic transcription factors. Methods 26:270–280

    Article  Google Scholar 

  • Warga RM, Kimmel CB (1990) Cell movements during epiboly and gastrulation in zebrafish. Development 108:569–580

    Google Scholar 

  • Wood W, Jacinto A, Grose R, Woolner S, Gale J, Wilson C, Martin P (2002) Wound healing recapitulates morphogenesis in Drosophila embryos. Nat Cell Biol 4:907–912

    Article  Google Scholar 

  • Zeng YA, Verheyen EM (2004) Nemo is an inducible antagonist of wingless signaling during Drosophila wing development. Development 131:2911–2920

    Article  Google Scholar 

  • Zhou FQ, Snide WD (2005) GSK-3β and microtubule assembly in axons. Science 308:211–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Demongeot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, L., Demongeot, J. Predictive Power of “A Minima” Models in Biology. Acta Biotheor 60, 3–19 (2012). https://doi.org/10.1007/s10441-012-9146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-012-9146-4

Keywords

Navigation