Skip to main content
Log in

Arithmetic on a Parallel Computer: Perception Versus Logic

  • Published:
Brain and Mind

Abstract

This article discusses the properties of a controllable, flexible, hybrid parallel computing architecture that potentially merges pattern recognition and arithmetic. Humans perform integer arithmetic in a fundamentally different way than logic-based computers. Even though the human approach to arithmetic is both slow and inaccurate it can have substantial advantages when useful approximations (“intuition”) are more valuable than high precision. Such a computational strategy may be particularly useful when computers based on nanocomponents become feasible because it offers a way to make use of the potential power of these massively parallel systems. Because the system architecture is inspired by neuroscience and is applied to cognitive problems, occasional mention is made of experimental data from both fields when appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J. A., 1993: The BSB network, in M. H. Hassoun (eds.), Associative Neural Networks, Oxford University Press, New York, pp. 77-103.

    Google Scholar 

  • Anderson, J. A., 1995: An Introduction to Neural Networks, MIT Press, Cambridge, MA.

    Google Scholar 

  • Anderson, J. A., 1998: Learning arithmetic with a neural network, in D. Scarborough and S. Sternberg (eds.), An Invitation to Cognitive Science, Volume 4: Methods, Models and Conceptual Issues, MIT Press, Cambridge, MA, pp. 255-300.

    Google Scholar 

  • Anderson, J. A., Gately, M. T., Penz, P. A. and Collins, D. R., 1990: Radar signal categorization using a neural network, Proc.IEEE 78, 1646-1657.

    Google Scholar 

  • Anderson, J. A. and Sutton, J. P., 1997: If we compute faster, do we understand better? Behav Res.Methods, Instruments, Comput. 29, 67-77.

    Google Scholar 

  • Blum, H. J., 1973: Biological shape and visual science (Part I), J.Theor.Bio. 38, 205-87.

    Google Scholar 

  • Bringuier, V., Chavane, F., Glaeser, L. and Fregnac, Y., 1999: Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283, 695-699.

    Google Scholar 

  • Graham, D. J., 1987: An associative retrieval model of arithmetic memory: How children learn to multiply, in J. A. Sloboda and D. Rogers (eds.), Cognitive Processes in Mathematics, Oxford: University Press, Oxford, pp. 123-141.

    Google Scholar 

  • Guan, L., Anderson, J. A. and Sutton, J. P., 1997:A network of networks processing model for image regularlization. IEEE Trans.Neural Networks 8, 1-6.

    Google Scholar 

  • Hadamard, J., 1949: The Psychology of Invention in the Mathematical Field, Dover, New York.

    Google Scholar 

  • Kimia, B., Tannenbaum, A. and Zucker, S. W., 1995: Shapes, shocks and deformations fIg: The components of shape and the reaction-diffusion space, Int.J.Comp.Vision 15, 189-224.

    Google Scholar 

  • Kovacs, I., Feher, A. and Julesz, B., 1998: Medial point description of shape: a representation for action coding and its psychophysical correlates. Vision Res. 38, 2323-2333.

    Google Scholar 

  • Kovacs, I. and Julesz, B., 1994: Perceptual sensitivity maps within globally defined shapes. Nature 370, 644-646.

    Google Scholar 

  • Lee, T.-S., 2002: Analysis and synthesis of visual images in the brain, in P. Olver and A. Tannenbaum (eds.), Image Analysis and the Brain, Springer, Berlin.

    Google Scholar 

  • Lee, T. S., Mumford, D., Romero, R. and Lamme, V. A. F., 1998: The role of primary visual cortex in higher level vision. Vision Res. 38, 2429-2454.

    Google Scholar 

  • Marr, D., 1982: Vision, Freeman, New York.

    Google Scholar 

  • McCulloch, W. S., 1951/1965: Why the mind is in the head, in W. S. McCulloch (ed.), Embodiments of Mind, MIT Press, MA, Cambridge, pp. 72-141.

    Google Scholar 

  • McCulloch, W. S. and Pitts,W., 1943/1965: A logical calculus of the ideas immanent in nervous activity, inW. S. McCulloch (ed.), Embodiments of Mind, Cambridge, MA, MIT Press, pp. 19-39.

    Google Scholar 

  • Nieder, A., Freedman, D. J., Miller, E. K., 2002: Representation of the quantity of visual items in the primate prefrontal cortex. Science 297, 1708-1711.

    Google Scholar 

  • Pitts, W. and McCulloch, W. S., 1947/1965: How we know universals: The perception of auditory and visual forms, in W. S. McCulloch (ed.), Embodiments of Mind, MIT Press, Cambridge, MA, pp. 46-66.

    Google Scholar 

  • Sathian, K., Simon, T. J., Peterson, S., Patel, G. A., Hoffman, J. M. and Grafton, S. T., 1999: Neural evidence linking visual object enumeration and attention. J.Cogn.Neurosci. 11, 36-51.

    Google Scholar 

  • Siddiqi, K., Kimia, B., Tannenbaum, A. and Zucker, S., 1999: Shocks, shapes, and wiggles. Image Vision Comp. 17, 365-373.

    Google Scholar 

  • Van Tonder, G. J., Lyons, M. J. and Ejima, Y., 2002: Visual structure of a Japanese Zen garden. Nature 419, 359.

    Google Scholar 

  • Wilson, R., Blake, R. and Lee, S.-H., 2001: Dynamics of travelingwaves in visual perception Nature 412, 907-910.

    Google Scholar 

  • Yeldham, F. A., 1926: The Story of Reckoning in the Middle Ages, Harrup, London.

    Google Scholar 

  • Yen, S.-C. and Finkel, L. H., 1998: Extraction of perceptually salient contours by striate cortical networks. Vision Res. 38, 719-641.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J.A. Arithmetic on a Parallel Computer: Perception Versus Logic. Brain and Mind 4, 169–188 (2003). https://doi.org/10.1023/A:1025453511640

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025453511640

Navigation