Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T01:55:43.148Z Has data issue: false hasContentIssue false

Neural reuse: A fundamental organizational principle of the brain

Published online by Cambridge University Press:  22 October 2010

Michael L. Anderson
Affiliation:
Department of Psychology, Franklin & Marshall College, Lancaster, PA 17604, and Institute for Advanced Computer Studies, Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742. michael.anderson@fandm.eduhttp://www.agcognition.org

Abstract

An emerging class of theories concerning the functional structure of the brain takes the reuse of neural circuitry for various cognitive purposes to be a central organizational principle. According to these theories, it is quite common for neural circuits established for one purpose to be exapted (exploited, recycled, redeployed) during evolution or normal development, and be put to different uses, often without losing their original functions. Neural reuse theories thus differ from the usual understanding of the role of neural plasticity (which is, after all, a kind of reuse) in brain organization along the following lines: According to neural reuse, circuits can continue to acquire new uses after an initial or original function is established; the acquisition of new uses need not involve unusual circumstances such as injury or loss of established function; and the acquisition of a new use need not involve (much) local change to circuit structure (e.g., it might involve only the establishment of functional connections to new neural partners). Thus, neural reuse theories offer a distinct perspective on several topics of general interest, such as: the evolution and development of the brain, including (for instance) the evolutionary-developmental pathway supporting primate tool use and human language; the degree of modularity in brain organization; the degree of localization of cognitive function; and the cortical parcellation problem and the prospects (and proper methods to employ) for function to structure mapping. The idea also has some practical implications in the areas of rehabilitative medicine and machine interface design.

Type
Target Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. R. (2007) How can the human mind occur in the physical universe? Oxford University Press.CrossRefGoogle Scholar
Anderson, J. R., Qin, Y., Junk, K. -J. & Carter, C. S. (2007) Information processing modules and their relative modality specificity. Cognitive Psychology 57:185217.CrossRefGoogle Scholar
Anderson, M. L. (2003) Embodied cognition: A field guide. Artificial Intelligence 149(1):91103.CrossRefGoogle Scholar
Anderson, M. L. (2007a) Evolution of cognitive function via redeployment of brain areas. The Neuroscientist 13:1321.CrossRefGoogle ScholarPubMed
Anderson, M. L. (2007b) Massive redeployment, exaptation, and the functional integration of cognitive operations. Synthese 159(3):329–45.CrossRefGoogle Scholar
Anderson, M. L. (2007c) The massive redeployment hypothesis and the functional topography of the brain. Philosophical Psychology 21(2):143–74.CrossRefGoogle Scholar
Anderson, M. L. (2008a) Circuit sharing and the implementation of intelligent systems. Connection Science 20(4):239–51.CrossRefGoogle Scholar
Anderson, M. L. (2008c) On the grounds of x-grounded cognition. In: The Elsevier handbook of cognitive science: An embodied approach, ed. Calvo, P. & Gomila, T., pp. 423–35. Elsevier.CrossRefGoogle Scholar
Anderson, M. L., Brumbaugh, J. & Şuben, A. (2010) Investigating functional cooperation in the human brain using simple graph-theoretic methods. In: Computational neuroscience, ed. Chaovalitwongse, A., Pardalos, P. M. & Xanthopoulos, P., pp. 3142. Springer.CrossRefGoogle Scholar
Anderson, M. L. & Oates, T. (2010) A critique of multi-voxel pattern analysis. Proceedings of the 32nd Annual Meeting of the Cognitive Science Society, ed. Ohlsson, S. and Catrambone, R., pp. 1511–16. Cognitive Science Society.Google Scholar
Anderson, M. L. & Silberstein, M. D. (submitted) Constraints on localization as an explanatory strategy in the biological sciences.Google Scholar
Andres, M., Seron, X. & Oliver, E. (2007) Contribution of hand motor circuits to counting. Journal of Cognitive Neuroscience 19:563–76.CrossRefGoogle ScholarPubMed
Atallah, H. E., Frank, M. J. & O'Reilly, R. C. (2004) Hippocampus, cortex, and basal ganglia: Insights from computational models of complementary learning systems. Neurobiology of Learning and Memory 82(3):253–67.CrossRefGoogle ScholarPubMed
Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A. & Katz, S. (1996) Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography. Psychological Science 7:2531.CrossRefGoogle Scholar
Baddeley, A. D. (1986) Working memory. Oxford University Press.Google ScholarPubMed
Baddeley, A. D. (1995) Working memory. In: The cognitive neurosciences, ed. Gazzaniga, M. S., pp. 755–64. MIT Press.Google Scholar
Baddeley, A. D. & Hitch, G. (1974) Working memory. In: The psychology of learning and motivation, ed. Bower, G. H., pp. 647–67. Erlbaum.Google Scholar
Baddeley, A. D. & Hitch, G. (1994) Developments in the concept of working memory. Neuropsychology 8:485–93.CrossRefGoogle Scholar
Barabási, A.-L. & Albert, R. (1999) Emergence of scaling in random networks. Science 286:509–12.CrossRefGoogle ScholarPubMed
Barabási, A.-L., Albert, R. & Jeong, H. (2000) Scale-free characteristics of random networks: The topology of the World Wide Web. Physica A 281:6977.CrossRefGoogle Scholar
Barkow, J. H., Cosmides, L. & Tooby, J., eds. (1992) The adapted mind: Evolutionary psychology and the generation of culture. Oxford University Press.CrossRefGoogle Scholar
Barrett, H. C. & Kurzban, R. (2006) Modularity in cognition: Framing the debate. Psychological Review 113(3):628–47.CrossRefGoogle ScholarPubMed
Barsalou, L. W. (1999) Perceptual symbol systems. Behavioral and Brain Sciences 22:577660.Google Scholar
Barsalou, L. W. (2008) Grounded cognition. Annual Review of Psychology 59:617–45.CrossRefGoogle ScholarPubMed
Bechtel, W. (2003) Modules, brain parts, and evolutionary psychology. In: Evolutionary psychology: Alternative approaches, ed. Scher, S. J. & Rauscher, F., pp. 211–27. Kluwer.CrossRefGoogle Scholar
Bechtel, W. & Richardson, R. C. (1993) Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton University Press.Google Scholar
Bechtel, W. & Richardson, R. C. (2010) Discovering complexity: Decomposition and localization as strategies in scientific research, 2nd edition. MIT Press/Bradford Books.CrossRefGoogle Scholar
Behrens, T. E. & Johansen-Berg, H. (2005) Relating connectional architecture to grey matter function using diffusion imaging. Philosophical Transactions of the Royal Society of London, B: Biological Sciences 360:903–11.CrossRefGoogle ScholarPubMed
Bergeron, V. (2007) Anatomical and functional modularity in cognitive science: Shifting the focus. Philosophical Psychology 20(2):175–95.CrossRefGoogle Scholar
Bergeron, V. (2008) Cognitive architecture and the brain: Beyond domain-specific functional specification. Unpublished doctoral dissertation, Department of Philosophy, University of British Columbia. Available at: http://circle.ubc.ca/handle/2429/2711.Google Scholar
Binkofski, F., Amunts, K., Stephan, K. M., Posse, S., Schormann, T., Freund, H.-J., Zilles, K. & Seitz, R. J. (2000) Broca's region subserves imagery of motion: A combined cytoarchitectonic and fMRI study. Human Brain Mapping 11:273–85.3.0.CO;2-0>CrossRefGoogle Scholar
Boroditsky, L. & Ramscar, M. (2002) The roles of body and mind in abstract thought. Psychological Science 13(2):185–88.CrossRefGoogle ScholarPubMed
Boyer, D., Miramontes, O., Ramos-Fernández, G., Mateos, J. L. & Cocho, G. (2004) Modeling the searching behavior of social monkeys. Physica A 342:329–35.CrossRefGoogle Scholar
Brown, C. T., Larry S. Liebovitch, L. S. & Glendon, R. (2007) Lévy flights in dobe ju/'hoansi foraging patterns. Human Ecology 35:129–38.CrossRefGoogle Scholar
Butterworth, B. (1999c) What counts – How every brain is hardwired for math. The Free Press.Google Scholar
Cabeza, R. & Nyberg, L. (2000) Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience 12:147.CrossRefGoogle Scholar
Carruthers, P. (2002) The cognitive functions of language. Behavioral and Brain Sciences 25(6):657–74.CrossRefGoogle ScholarPubMed
Carruthers, P. (2006) The architecture of the mind: Massive modularity and the flexibility of thought. Clarendon Press/Oxford University Press.CrossRefGoogle Scholar
Casasanto, D. & Boroditsky, L. (2008) Time in the mind: Using space to think about time. Cognition 106:579–93.CrossRefGoogle ScholarPubMed
Casasanto, D. & Dijkstra, K. (2010) Motor action and emotional memory. Cognition 115(1):179–85.Google Scholar
Changizi, M. A. & Shimojo, S. (2005) Character complexity and redundancy in writing systems over human history. Proceedings of the Royal Society of London B: Biological Sciences 272:267–75.Google ScholarPubMed
Changizi, M. A., Zhang, Q., Ye, H. & Shimojo, S. (2006) The structures of letters and symbols throughout human history are selected to match those found in objects in natural scenes. American Naturalist 167:E117–39.CrossRefGoogle ScholarPubMed
Chao, L. L. & Martin, A. (2000) Representation of manipulable man-made objects in the dorsal stream. NeuroImage 12:478–84.CrossRefGoogle ScholarPubMed
Chemero, A. (2009) Radical embodied cognitive science. MIT Press.CrossRefGoogle Scholar
Cherniak, C., Mokhtarzada, Z., Rodrigues-Esteban, R. & Changizi, K. (2004) Global optimization of cerebral cortex layout. Proceedings of the National Academy of Sciences USA 101:1081–86.Google Scholar
Clark, A. (1997) Being there: Putting brain, body, and world together again. MIT Press.Google Scholar
Clark, A. (1998) Embodied, situated, and distributed cognition. In: A companion to cognitive science, ed. Bechtel, W. & Graham, G., pp. 506–17. Blackwell.Google Scholar
Coltheart, M. (2001) Assumptions and methods in cognitive neuropsychology. In: The handbook of cognitive neuropsychology, ed. Rapp, B., pp. 321. Psychology Press.Google Scholar
Costafreda, S. G., Fu, C. H. Y., Lee, L., Everitt, B., Brammer, M. J. & David, A. S. (2006) A systematic review and quantitative appraisal of fMRI studies of verbal fluency: Role of the left inferior frontal gyrus. Human Brain Mapping 27(10):799810.CrossRefGoogle ScholarPubMed
Culham, J. C. & Valyear, K. F. (2006) Human parietal cortex in action. Current Opinion in Neurobiology 16:205–12.CrossRefGoogle ScholarPubMed
Dagher, A., Owen, A., Boecker, H. & Brooks, D. (1999) Mapping the network for planning. Brain 122:1973–87.CrossRefGoogle Scholar
Damasio, A. & Tranel, D. (1993) Nouns and verbs are retrieved with differently distributed neural systems. Proceedings of the National Academy of Sciences USA 90:4957–60.Google Scholar
Damasio, H., Grabowski,T. J., Tranel, D., Hichwa, R. D. & Damasio, A. R. (1996) A neural basis for lexical retrieval. Nature 380:499505.CrossRefGoogle ScholarPubMed
Darwin, C. (1862) On the various contrivances by which British and foreign orchids are fertilised by insects, and on the good effects of intercrossing. John Murray.Google Scholar
Deacon, T. (1997). The symbolic species. Norton.Google Scholar
Decety, J. & Grèzes, J. (1999) Neural mechanisms subserving the perception of human actions. Trends in Cognitive Sciences 3:172–78.CrossRefGoogle ScholarPubMed
Decety, J., Grezes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., Grassi, F. & Fazio, F. (1997) Brain activity during observation of actions. Influence of action content and subject's strategy. Brain 120:1763–77.Google Scholar
Decety, J., Sjoholm, H., Ryding, E., Stenberg, G. & Ingvar, D. (1990) The cerebellum participates in cognitive activity: Tomographic measurements of regional cerebral blood flow. Brain Research 535:313–17.Google Scholar
Dehaene, S. (2005) Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. In: From monkey brain to human brain, ed. Dehaene, S., Duhamel, J.-R., Hauser, M. D. & Rizolatti, G., pp. 133–57. MIT Press.Google Scholar
Dehaene, S. (2009) Reading in the brain. Viking.Google Scholar
Dehaene, S., Bossini, S. & Giraux, P. (1993) The mental representation of parity and numerical magnitude. Journal of Experimental Psychology: General 122:371–96.Google Scholar
Dehaene, S. & Cohen, L. (2007) Cultural recycling of cortical maps. Neuron 56:384–98.CrossRefGoogle ScholarPubMed
Fauconnier, G. & Turner, M. (2002) The way we think: Conceptual blending and the mind's hidden complexities. Basic Books.
Fedorenko, E., Patel, A., Casasanto, D., Winawer, J. & Gibson, T. (2009) Structural integration in language and music: Evidence for a shared system. Memory and Cognition 37(1):19.CrossRefGoogle ScholarPubMed
Feldman, J. & Narayanan, S. (2004) Embodied meaning in a neural theory of language. Brain and Language 89:385–92.Google Scholar
Fodor, J. (1975) The language of thought. Harvard University Press.Google Scholar
Fodor, J. & Pylyshyn, Z. W. (1988) Connectionaism and cognitive architecture: A critical analysis. Cognition 28:371.CrossRefGoogle ScholarPubMed
Fowler, C. A., Rubin, P., Remez, R. E. & Turvey, M. T. (1980) Implications for speech production of a general theory of action. In: Language production, vol. 1: Speech and talk, ed. Butterworth, B., pp. 373420. Academic Press.Google Scholar
Fox, P. T. & Lancaster, J. L. (2002) Mapping context and content: The BrainMap model. Nature Reviews Neuroscience 3:319–21.CrossRefGoogle ScholarPubMed
Fox, P. T., Parsons, L. M. & Lancaster, J. L. (1998) Beyond the single study: Function-location meta-analysis in cognitive neuroimaging. Current Opinions in Neurobiology 8:178–87.CrossRefGoogle ScholarPubMed
Fries, R. C. (2006) Reliable design of medical devices. CRC Press.Google Scholar
Gallese, V. (2003) A neuroscientific grasp of concepts: From control to representation. Philosophical Transactions of the Royal Society London, B: Biological Sciences 358(1435):1231–40.CrossRefGoogle ScholarPubMed
Gallese, V. (2008) Mirror neurons and the social nature of language: The neural exploitation hypothesis. Social Neuroscience 3 (3–4):317–33.Google Scholar
Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. (1996) Action recognition in the premotor cortex. Brain 119:593609.CrossRefGoogle ScholarPubMed
Gallese, V. & Goldman, A. (1998) Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences 2(12):493501.CrossRefGoogle ScholarPubMed
Gallese, V. & Lakoff, G. (2005) The brain's concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology 22 (3–4):455–79.Google Scholar
Gauthier, I., Skudlarski, P., Gore, J. C. & Anderson, A. W. (2000) Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neuroscience 3(2):191–97.CrossRefGoogle ScholarPubMed
Gentner, D. & Stevens, A. L., eds. (1983) Mental models. Erlbaum.Google Scholar
Gibson, J. J. (1979) The ecological approach to visual perception. Erlbaum.Google Scholar
Gigerenzer, G., Todd, P. M. & The ABC Research Group (1999) Simple heuristics that make us smart. Oxford University Press.Google Scholar
Gilovich, T., Griffin, D. & Kahneman, D., eds. (2002) Heuristics and biases: The psychology of intuitive judgment. Cambridge University Press.Google Scholar
Glenberg, A. M., Becker, R., Klötzer, S., Kolanko, L., Müller, S. & Rinck, M. (2009) Episodic affordances contribute to language comprehension. Language and Cognition 1:113–35.Google Scholar
Glenberg, A. M., Brown, M. & Levin, J. R. (2007) Enhancing comprehension in small reading groups using a manipulation strategy. Contemporary Educational Psychology 32:389–99.Google Scholar
Glenberg, A. M. & Kaschak, M. P. (2002) Grounding language in action. Psychonomic Bulletin and Review 9:558–65.CrossRefGoogle ScholarPubMed
Glenberg, A. M., Sato, M. & Cattaneo, L. (2008a) Use-induced motor plasticity affects the processing of abstract and concrete language. Current Biology 18:R290–91.Google Scholar
Glenberg, A. M., Sato, M., Cattaneo, L., Riggio, L., Palumbo, D. & Buccino, G. (2008b) Processing abstract language modulates motor system activity. Quarterly Journal of Experimental Psychology 61:905–19.CrossRefGoogle ScholarPubMed
Goldin-Meadow, S. (2003) Hearing gesture: How our hands help us think. Belknap Press.Google Scholar
Graziano, M. S. A., Taylor, C. S. R. & Moore, T. (2002a) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841–51.Google Scholar
Graziano, M. S. A., Taylor, C. S. R., Moore, T. & Cooke, D. F. (2002b) The cortical control of movement revisited. Neuron 36:349–62.Google Scholar
Grill-Spector, K., Sayres, R. & Ress, D. (2006) High-resolution imaging reveals highly selective nonface clusters in the fusiform face area. Nature Neuroscience 9(9):1177–85.CrossRefGoogle ScholarPubMed
Haggard, P., Rossetti, Y. & Kawato, M., eds. (2008) Sensorimotor foundations of higher cognition. Oxford University Press.Google Scholar
Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J. & Sporns, O. (2008) Mapping the structural core of human cerebral cortex. PLoS Biology 6(7):e159. Available at: http://biology.plosjournals.org/perlserv/?request=get-document. doi:10.1371/journal.pbio.0060159.Google Scholar
Hagoort, P. (2005) On Broca, brain and binding. Trends in Cognitive Sciences 9(9): 416–23.CrossRefGoogle ScholarPubMed
Hall, J. S. (2009) The robotics path to AGI using servo stacks. In: Proceedings of the Second Conference on Artificial General Intelligence, ed. Goertzel, B., Hitzler, P. & Hutter, M., pp. 4954. Atlantis Press. doi:10.2991/agi.2009.5.Google Scholar
Hamzei, F., Rijntjes, M., Dettmers, C., Glauche, V., Weiller, C. & Büchel (2003) The human action recognition system and its relationship to Broca's area: An fMRI study. Neuroimage 19:637–44.Google Scholar
Hanakawa, T., Honda, M., Sawamoto, N., Okada, T., Yonekura, Y., Fukuyama, H. & Shibasaki, H. (2002) The role of rostral Brodmann area 6 in mental-operation tasks: An integrative neuroimaging approach. Cerebral Cortex 12:1157–70.Google Scholar
Ho, T. -Y., Lama, P. -M. & Leung, C. -S. (2008) Parallelization of cellular neural networks on GPU. Pattern Recognition 41(8):2684–92.CrossRefGoogle Scholar
Honey, C. J., Kötter, R., Breakspear, M. & Sporns, O. (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences USA 104:10240–45.Google Scholar
Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R. & Hagmann, P. (2009) Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences USA 106(6):2035–40.Google Scholar
Hopkin, V. D. (1995) Human factors in air traffic control. CRC Press.Google Scholar
Hubbard, E. M., Piazza, M., Pinel, P. & Dehaene, S. (2005) Interactions between number and space in parietal cortex. Nature Reviews Neuroscience 6(6):435–48.Google Scholar
Hurford, J. (2003) The neural basis of predicate-argument structure. Behavioral and Brain Sciences 26(3):261–83.Google Scholar
Hurley, S. L. (2005) The shared circuits hypothesis: A unified functional architecture for control, imitation and simulation. In: Perspectives on imitation: From neuroscience to social science, ed. Hurley, S. & Chater, N., pp. 7695. MIT Press.Google Scholar
Hurley, S. L. (2008) The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences 31(1):158.CrossRefGoogle ScholarPubMed
Hutchins, E. (1995) Cognition in the wild. MIT Press.Google Scholar
Iriki, A. (2005). A prototype of homo-faber: A silent precursor of human intelligence in the tool-using monkey brain. In: From monkey brain to human brain, ed. Dehaene, S., Duhamel, J. R., Hauser, M. & Rizzolati, G., pp. 133–57. MIT Press.Google Scholar
Iriki, A. & Sakura, O. (2008) Neuroscience of primate intellectual evolution: Natural selection and passive and intentional niche construction. Philosophical Transactions of the Royal Society of London, B: Biological Science 363:2229–41.CrossRefGoogle ScholarPubMed
Jeannerod, M. (1994) The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences 17:187245.Google Scholar
Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A. -L. (2000) The large-scale organization of metabolic networks. Nature 407:651–54.Google Scholar
Jilk, D. J., Lebiere, C., O'Reilly, R. C. & Anderson, J. R. (2008) SAL: An explicitly pluralistic cognitive architecture. Journal of Experimental and Theoretical Artificial Intelligence 20:197218.Google Scholar
Johnson-Laird, P. N. (1983) Mental models: Towards a cognitive science of language, inference, and consciousness. Harvard University Press.Google Scholar
Kanwisher, N., McDermott, J. & Chun, M. (1997) The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience 17(11):4302–11.CrossRefGoogle ScholarPubMed
Koch, C. & Segev, I. (2000) The role of single neurons in information processing. Nature Neuroscience 3:1171–77.Google Scholar
Laird, A. R., Lancaster, J. L. & Fox, P. T. (2005) BrainMap: The social evolution of a functional neuroimaging database. Neuroinformatics 3:6578.Google Scholar
Lakoff, G. & Johnson, M. (1980) Metaphors we live by. University of Chicago Press.Google Scholar
Lakoff, G. & Johnson, M. (1999) Philosophy in the flesh: The embodied mind and its challenge to western thought. Basic Books.Google Scholar
Lakoff, G. & Núñez, R. (2000) Where mathematics comes from: How the embodied mind brings mathematics into being. Basic Books.Google Scholar
Lloyd, D. (2000) Terra cognita: From functional neuroimaging to the map of the mind. Brain and Mind 1(1):93116.CrossRefGoogle Scholar
Marcus, G. F. (2004) The birth of the mind: How a tiny number of genes creates the complexities of human thought. Basic Books.Google Scholar
Marcus, G. F. (2008) Kluge: The haphazard construction of the human mind. Houghton Mifflin.Google Scholar
Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L. & Ungerleider, L. G. (1995) Discrete cortical regions associated with knowledge of color and knowledge of action. Science 270:102105.Google Scholar
Martin, A., Ungerleider, L. G. & Haxby, J. V. (2000) Category-specificity and the brain: the sensorymotor model of semantic representations of objects. In: The new cognitive neurosciences, 2nd edition, ed. Gazzaniga, M. S., pp. 1023–36. MIT Press.Google Scholar
Martin, A., Wiggs, C. L., Ungerleider, L. G. & Haxby, J. V. (1996) Neural correlates of category-specific knowledge. Nature 379:649–52.CrossRefGoogle ScholarPubMed
Mesulam, M.-M. (1990) Large-scale neurocognitive networks and distributed processing for attention, language and memory. Annals of Neurology 28:597613.Google Scholar
Miali, R. C. (2003) Connecting mirror neurons and forward models. NeuroReport 14(17):2135–37.Google Scholar
Millikan, R. G. (1984) Language, thought and other biological categories. MIT Press.CrossRefGoogle Scholar
Mitchell, M. (2006). Complex systems: Network thinking. Artificial Intelligence 170:1194–212.Google Scholar
Müller, R.-A. & Basho, S. (2004) Are nonlinguistic functions in “Broca's area” prerequisites for language acquisition? fMRI findings from an ontogenetic viewpoint. Brain and Language 89(2):329–36.Google Scholar
Murphy, F. C., Nimmo-Smith, I. & Lawrence, A. D. (2003) Functional neuroanatomy of emotions: A meta-analysis. Cognitive, Affective and Behavioral Neuroscience 3(3):207–33.CrossRefGoogle ScholarPubMed
Newell, A. & Simon, H. A. (1976) Computer science as empirical enquiry. Communications of the ACM 19(3):113–26.CrossRefGoogle Scholar
Newman, M., Barabasi, A.-L. & Watts, D. J. (2006) The structure and dynamics of networks. Princeton University Press.Google Scholar
Nishitani, N., Schürmann, M., Amunts, K. & Hari, R. (2005) Broca's region: From action to language. Physiology 20:6069.Google Scholar
Nvidia Corporation. (2007) CUDA Programming Guide, version 1.1. Santa Clara, CA. Available at: http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf.Google Scholar
Odling-Smee, F. J., laland, K. N. & Geldman, M. W. (2005) Niche construction: The neglected process in evolution. Princeton University Press.Google Scholar
O'Reilly, R. C. (1998) Six principles for biologically based computational models of cortical cognition. Trends in Cognitive Sciences 2:455–62.Google Scholar
O'Reilly, R. C. & Munakata, Y. (2000) Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain. MIT Press.Google Scholar
Pagán Cánovas, C. (2009) La emisión erótica en la poesía griega: una familia de redes de integración conceptual desde la Antigüedad hasta el siglo XX. Departmento Filología Clásica, Universidad de Murcia, Spain. http://www.tesisenred.net/TDR-0519110-103532/index.html.Google Scholar
Penner-Wilger, M. (2009) Subitizing, finger gnosis, and finger agility as precursors to the representation of number. Unpublished doctoral dissertation, Department of Cognitive Science, Carleton University, Ottawa, Canada. http://gradworks.umi.com/NR/52/NR52070.Google Scholar
Penner-Wilger, M. & Anderson, M. L. (2008) An alternative view of the relation between finger gnosis and math ability: Redeployment of finger representations for the representation of number. In: Proceedings of the 30th Annual Meeting of the Cognitive Science Society, Austin, TX, July 23–26, 2008, ed. Love, B. C., McRae, K. & Sloutsky, V. M., pp. 1647–52. Cognitive Science Society.Google Scholar
Penner-Wilger, M. & Anderson, M. L. (submitted) The relation between finger recognition and mathematical ability: Why redeployment of neural circuits best explains the finding.Google Scholar
Pereira, F., Mitchell, T. & Botvinick, M. M. (2009) Machine learning classifiers and fMRI: A tutorial overview. NeuroImage 45:S199209.CrossRefGoogle ScholarPubMed
Pessoa, L. (2008) On the relationship between emotion and cognition. Nature Reviews Neuroscience 9:148–58.CrossRefGoogle ScholarPubMed
Phan, K. L, Wager, T., Taylor, S. F. & Liberzon, I. (2002) Functional neuroanatomy of mmotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage 16(2):331–48.Google Scholar
Piaget, J. (1952) The child's conception of number. Routledge and Kegan Paul.Google Scholar
Pinker, S. (1997) How the mind works. Norton.Google Scholar
Plaut, D. C. (1995) Double dissociation without modularity: Evidence from connectionist neuropsychology. Journal of Clinical and Experimental Neuropsychology 17:291321.CrossRefGoogle ScholarPubMed
Poldrack, R. A. (2006) Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences 10:5963.Google Scholar
Postuma, R. B. & Dagher, A. (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 PET and fMRI publications. Cerebral Cortex 16(10):1508–21.Google Scholar
Prinz, J. (2002) Furnishing the mind: Concepts and their perceptual basis. MIT Press.Google Scholar
Prinz, J. (2006) Is the mind really modular? In: Contemporary debates in cognitive science, ed. Stainton, R. J., pp. 2236. Blackwell.Google Scholar
Pulvermüller, F. (2005) Brain mechanisms linking language and action. Nature Reviews Neuroscience 6:576–82.Google Scholar
Quartz, S. R. & Sejnowski, T. J. (1997) The neural basis of cognitive development: A constructivist manifesto. Behavioral and Brain Sciences 20:537–56.Google Scholar
Quince, C., Higgs, P. G. & McKane, A. J. (2002) Food web structure and the evolution of ecological communities. In: Biological evolution and statistical physics: Lecture notes in Physics 585, ed. Laessig, M. & Valleriani, A., pp. 281–98. Springer-Verlag.Google Scholar
Rasmussen, J. & Vicente, K. J. (1989) Coping with human errors through system design: implications for ecological interface design. International Journal of Man-Machine Studies 31:517–34.Google Scholar
Rhodes, G., Byatt, G., Michie, P. T. & Puce, A. (2004) Is the Fusiform Face Area specialized for faces, individuation, or expert individuation?. Journal of Cognitive Neuroscience 16(2):189203.CrossRefGoogle ScholarPubMed
Richardson, D., Spivey, M., Barsalou, L. & McRae, K. (2003) Spatial representations activated during real-time comprehension of verbs. Cognitive Science 27:767–80.Google Scholar
Ritter, F. E. & Young, R. M., eds. (2001) Using cognitive models to improve interface design. International Journal of Human-Computer Studies 55(1):1107. (Special Issue.)Google Scholar
Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. (1996) Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3:131–41.Google Scholar
Roux, F. -E., Boetto, S., Sacko, O., Chollet, F. & Tremoulet, M. (2003) Writing, calculating, and finger recognition in the region of the angular gyrus: A cortical stimulation study of Gerstmann syndrome. Journal of Neurosurgery 99:716–27.Google Scholar
Rumelhart, D. E. & McClelland, J. L (1986) Parallel distributed processing: Explorations in the microstructure of cognition. MIT Press.Google Scholar
Rusconi, E., Walsh, V. & Butterworth, B. (2005) Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia 43:1609–24.Google Scholar
Salvucci, D. D. (2005) A multitasking general executive for compound continuous tasks. Cognitive Science 29:457–92.Google Scholar
Sandler, W. & Lillo-Martin, D. (2006) Sign languages and linguistic universals. Cambridge University Press.Google Scholar
Scher, S. J. (2004) A lego model of the modularity of the mind. Journal of Cultural and Evolutionary Psychology 2(21):248–59.Google Scholar
Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K., Martin, A. & Barsalou, L. W. (2007) A common neural substrate for perceiving and knowing about color. Neuropsychologia 45(12): 2802–10.CrossRefGoogle ScholarPubMed
Simon, H. A. (1962/1969) The architecture of complexity. Proceedings of the American Philosophical Association 106:467–82. Reprinted in: H. Simon, The sciences of the artificial, 1st edition, pp. 192–229. MIT Press, 1969.Google Scholar
Sperber, D. (1996) Explaining culture. Blackwell.Google Scholar
Sporns, O., Chialvo, D. R., Kaiser, M. & Hilgetag, C. C. (2004) Organization, development and function of complex brain networks. Trends in Cognitive Sciences 8:418–25.Google Scholar
Sporns, O., Tononi, G. & Edelman, G. M. (2000) Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex 10:127–41.Google Scholar
Sternberg, S. (1969) The discovery of processing stages: Extensions of Donders' method. Acta Psychologica 30: 276315.Google Scholar
Stewart, T. C. & West, R. L. (2007) Cognitive redeployment in ACT-R: Salience, vision, and memory. Paper presented at the 8th International Conference on Cognitive Modelling, Ann Arbor, MI, July 26–29, 2007.Google Scholar
Svoboda, E., McKinnon, M. C. & Levine, B. (2006) The functional neuroanatomy of autobiographical memory: A meta-analysis. Neuropsychologia 44(12):2189–208.Google Scholar
Talairach, J. & Tournaux, P. (1988) Co-planar stereotaxic atlas of the human brain. Thieme.Google Scholar
Tettamanti, M. & & Weniger, D. (2006) Broca's area: A supramodal hierarchical processor? Cortex 42:491–94.Google Scholar
Thoenissen, D., Zilles, K. & Toni, I. (2002) Differential involvement of parietal and precentral regions in movement preparation and motor intention. Journal of Neuroscience 22:9024–34.Google Scholar
Tooby, J. & Cosmides, L. (1992) The psychological foundations of culture. In: The adapted mind: Evolutionary psychology and the generation of culture, ed. Barkow, J., Cosmides, L. & Tooby, J., pp. 19136. Oxford University Press.Google Scholar
Turkeltaub, P. E., Eden, G. F., Jones, K. M. & Zeffiro, T. A. (2002) Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. NeuroImage 16:765–80.CrossRefGoogle ScholarPubMed
Van Orden, G. C., Pennington, B. F. & Stone, G. O. (2001) What do double dissociations really prove? Cognitive Science 25:111–72.CrossRefGoogle Scholar
Weiskopf, D. (2007) Concept empiricism and the vehicles of thought. The Journal of Consciousness Studies 14:156–83.Google Scholar
Wen, Q. & Chklovskii, D. B. (2008) A cost–benefit analysis of neuronal morphology. Journal of Neurophysiology 99:2320–28.Google Scholar
Wilson, M. (2001) The case for sensorimotor coding in working memory. Psychonomic Bulletin and Review 8:4457.Google Scholar
Wilson, M. (2002) Six views of embodied cognition. Psychonomic Bulletin and Review 9(4):625–36.Google Scholar
Wolpert, D. M., Doya, K. & Kawato, M. (2003) A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society B: Biological Sciences 358:593602.Google Scholar
Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B. & Tzourio-Mazoyer, N. (2001) Neural correlates of simple and complex mental calculation. NeuroImage 13:314–27.Google Scholar