Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-26T16:07:50.631Z Has data issue: false hasContentIssue false

ON THE RELATIONSHIP BETWEEN PLANE AND SOLID GEOMETRY

Published online by Cambridge University Press:  20 March 2012

ANDREW ARANA*
Affiliation:
Department of Philosophy of Kansas State University and University of California-Berkeley
PAOLO MANCOSU*
Affiliation:
Department of Philosophy of Kansas State University and University of California-Berkeley
*
*DEPARTMENT OF PHILOSOPHY, 201 DICKENS HALL, KANSAS STATE UNIVERSITY, MANHATTAN, KS, 66503, USA E-mail:andrew.arana@gmail.com
DEPARTMENT OF PHILOSOPHY, 314 MOSES HALL #2390, UNIVERSITY OF CALIFORNIA, BERKELEY, CA, 94720-2390, USA E-mail:mancosu@socrates.berkeley.edu

Abstract

Traditional geometry concerns itself with planimetric and stereometric considerations, which are at the root of the division between plane and solid geometry. To raise the issue of the relation between these two areas brings with it a host of different problems that pertain to mathematical practice, epistemology, semantics, ontology, methodology, and logic. In addition, issues of psychology and pedagogy are also important here. To our knowledge there is no single contribution that studies in detail even one of the aforementioned areas.

In this paper our major concern is with methodological issues of purity and thus we treat the connection to other areas of the planimetry/stereometry relation only to the extent necessary to articulate the problem area we are after.

Our strategy will be as follows. In the first part of the paper we will give a rough sketch of some key episodes in mathematical practice that relate to the interaction between plane and solid geometry. The sketch is given in broad strokes and only with the intent of acquainting the reader with some of the mathematical context against which the problem emerges. In the second part, we will look at a debate (on “fusionism”) in which for the first time methodological and foundational issues related to aspects of the mathematical practice covered in the first part of the paper came to the fore. We conclude this part of the paper by remarking that only through a foundational and philosophical effort could the issues raised by the debate on “fusionism” be made precise. The third part of the paper focuses on a specific case study which has been the subject of such an effort, namely the foundational analysis of the plane version of Desargues’ theorem on homological triangles and its implications for the relationship between plane and solid geometry. Finally, building on the foundational case study analyzed in the third section, we begin in the fourth section the analytic work necessary for exploring various important claims about “purity,” “content,” and other relevant notions.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Abbott, E. (1884). Flatland: A Romance of Many Dimensions. London: Seeley and Co.Google Scholar
Álvarez Paiva, J. C. (2005). Symplectic geometry and Hilbert’s fourth problem. Journal of Differential Geometry, 690(2), 353378.Google Scholar
Amaldi, U. (1900). Sulla teoria dell’equivalenza. In Enriques, F., editor. Questioni Riguardanti la Geometria Elementare. Bologna, Italy: Zanichelli, pp. 103142.Google Scholar
Andriani, A., Angeleri, F., & Giulio Lazzeri, (1904). Note all’inchiesta sulla fusione della geometria piana con la solida. Periodico di Matematica, 19, 292296.Google Scholar
Anonymous. (1901). La fusione della planimetria e stereometria in Francia. Bollettino della Mathesis, 50(4).Google Scholar
Arana, A. (2008). Logical and semantic purity. Protosociology, 25, 3648. Reprinted in Philosophy of Mathematics: Set Theory, Measuring Theories, and Nominalism, Gerhard Preyer and Georg Peter (eds.), Ontos, 2008.CrossRefGoogle Scholar
Arana, A. (2009). On formally measuring and eliminating extraneous notions in proofs. Philosophia Mathematica, 17, 208219.CrossRefGoogle Scholar
Archimedes. (2004). The Works of Archimedes, Vol. I. Cambridge, UK: Cambridge University Press. Translated into English with critical comments by Reviel Netz.Google Scholar
Audin, M. (2003). Geometry. Berlin: Springer-Verlag. Translated from the 1998 French original.CrossRefGoogle Scholar
Avellone, M., Brigaglia, A., & Zappulla, C. (2002). The foundations of projective geometry in Italy from De Paolis to Pieri. Archive for History of Exact Sciences, 560(5), 363425.CrossRefGoogle Scholar
Belhoste, B. (1998). De l’École Polytechnique à Saratoff, les premiers travaux géométriques de Poncelet. Bulletin de la Société des Amis de la Bibliothèque de l’École Polytechnique, 19, 929.Google Scholar
Belhoste, B., & Taton, R. (1989). L’invention d’une langue des figures. In Dhombres, J., editor. L’École Normale de l’An III, Leçons de Mathématiques, Laplace-Lagrange-Monge. Paris, France: Dunod, pp. 269303.Google Scholar
Bellavitis, G. (1838). Saggio di geometria derivata. Nuovi Saggi della Imperiale Regia Accademia di Scienze Lettere ed Arti in Padova, 4, 243288.Google Scholar
Beltrami, E. (1902). Resoluzione del problema: riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette. Annali di Matematica Pura et Applicata, 10(7), 185204. Reprinted in Opere Matematiche di Eugenio Beltrami, Book 1, Ulrico Hoepli, Milano, 1902.Google Scholar
Bernays, P. (1922). Die Bedeutung Hilberts für die Philosophie der Mathematik. Die Naturwissenschaften, 10, 9399. English translation in Paolo Mancosu. From Brouwer to Hilbert. Oxford University Press, New York, 1998. pp. 189–197.CrossRefGoogle Scholar
Bettazzi, R. (1891). Review of G. Lazzeri e A. Bassani, Professori della R. Accademia Navale – Elementi di Geometria – Livorno. Tip. di R. Giusti, 1891. Periodico di Matematica, 6, 155163.Google Scholar
Bkouche, R. (1991). Variations autour de la réforme de 1902/1905. In Gispert, H., et al. ., editors. La France Mathématique. Paris, France: Cahiers d’Histoire et de Philosophie des Sciences et Société Mathématique de France, pp. 181213.Google Scholar
Bkouche, R. (1996). La place de la géométrie dans l’enseignement des mathématiques en France, de la réforme de 1902 à la réforme des mathématiques modernes. In Belhoste, B., Gispert, H., and Hulin, N., editors. Les Sciences au Lycée. Paris, France: Vuibert, Paris.Google Scholar
Bkouche, R. (2003). La géométrie dans les premières années de le revue L’Enseignement Mathématique. In Coray, D., Furinghetti, F., Gispert, H., Hodgson, B. R., and Schubring, G., editors. One Hundred Years of L’Enseignement Mathématique (Moments of Mathematics Education in the Twentieth Century). Genève, Switzerland: L’Enseignement Mathématique, pp. 95113.Google Scholar
Bolondi, G., editor. (2002). La Mathesis. La Prima Metà del Novecento nella “Società Italiana di Scienze Matematiche e Fisiche”, Vol. 5 of PRISTEM/Storia. Milano, Italy: Springer.Google Scholar
Bolzano, B. (2005). The Mathematical Works of Bernard Bolzano. Oxford, UK: Oxford University Press. Edited by Russ, Steve.Google Scholar
Bretschneider, C. A. (1844). Lehrgebäude der niederen Geometrie. Jena: F. Frommann.Google Scholar
Busemann, H. (1941). On Leibniz’s definition of planes. American Journal of Mathematics, 630(1), 101111.CrossRefGoogle Scholar
Busemann, H. (1955). The Geometry of Geodesics. New York, NY: Academic Press Inc.Google Scholar
Busemann, H. (1976). Problem IV: Desarguesian spaces. In Browder, F., editor. Mathematical Developments Arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974). Proc. Sympos. Pure Math., Vol. XXVIII. Providence, RI: American Mathematical Society, pp. 131141.Google Scholar
Busemann, H. (1981). Review of Hilbert’s Fourth Problem. Bulletin of the American Mathematical Society, 40(1), 8790.CrossRefGoogle Scholar
Candido, G. (1899). Sur la fusion de la planimétrie et de la stéréométrie. L’Enseignement Mathématique, 1, 204215.Google Scholar
Carnap, R. (1937). Logical Syntax of Language. London: Kegan Paul, Trench, Trubner and Co. Translated by Amethe Smeaton (Countess von Zeppelin).Google Scholar
Cavalieri, B. (1635). Geometria Indivisibilibus Continuorum Nova Quadam Ratione Promota. Bologna, Italy: Clemente Ferroni.Google Scholar
Cerroni, C. (2004). Non-Desarguian geometries and the foundations of geometry from David Hilbert to Ruth Moufang. Historia Mathematica, 31, 320336.CrossRefGoogle Scholar
Chasles, M. (1837). Aperçu Historique sur l’Origine et le Développement des Méthodes en Géométrie. Bruxelles, Belgium: M. Hayez.Google Scholar
Courant, R., & Robbins, H. (1996). What Is Mathematics? (second edition). New York: Oxford University Press. Revised by Ian Stewart.CrossRefGoogle Scholar
Coxeter, H. S. M. (1989). Introduction to Geometry (second edition). New York: Wiley.Google Scholar
Coxeter, H. S. M., & Greitzer, S. L. (1967). Geometry Revisited. Washington, D.C.: Mathematical Association of America.CrossRefGoogle Scholar
Cremona, L. (1873). Elementi di Geometria Projettiva. Roma, Italy: G.B. Paravia. Translated into French by Edouard Dewulf, Gauthier-Villars, Paris, 1875.Google Scholar
De Amicis, E. (1897–1898). Pro fusione. Relazione sulla questione V proposta nel N.1 (anno I) del Bollettino dell’Associazione Mathesis “Opportunità della fusione della geometria piana con la solida nell’insegnamento”. Bollettino della Mathesis, 20(4), 7396. Republished in Periodico di Matematica 13, 1898, pp. 49–72.Google Scholar
De Paolis, R. (1884). Elementi di Geometria. Torino, Italy: Loescher.Google Scholar
De Risi, V. (2007). Geometry and Monadology: Leibniz’s Analysis Situs and Philosophy of Space. Basel: Birkhäuser.CrossRefGoogle Scholar
Detlefsen, M. (2008). Purity as an ideal of proof. In Mancosu, P., editor. The Philosophy of Mathematical Practice. Oxford: Oxford University Press, pp. 179197.CrossRefGoogle Scholar
Detlefsen, M., & Arana, A. (2011). Purity of methods. Philosophers’ Imprint, 110(2), 120.Google Scholar
Dhombres, J., editor. (1989). L’École Normale de l’An III, Leçons de Mathématiques, Laplace-Lagrange-Monge. Paris, France: Dunod.Google Scholar
Euclid. (2007). Tutte le Opere. Milano, Italy: Bompiani. Edited by Acerbi, Fabio.Google Scholar
Gandon, S. (2004). Russell et l’ Universal Algebra de Whitehead: la géométrie projective entre ordre et incidence (1898–1903). Revue d’Histoire des Máthematiques, 10, 187256.Google Scholar
Gandon, S. (2009). Toward a topic-specific logicism? Russell’s theory of geometry in The Principles of Mathematics. Philosophia Mathematica, 170(1), 3572.Google Scholar
Gergonne, J. (1825–1826). Philosophie mathématique. Considérations philosophiques sur les élémens de la science de l’étendue. Annales de Mathématiques Pures et Appliquées, 16, 209231.Google Scholar
Gerlich, G. (2005). Topological affine planes with affine connections. Advances in Geometry, 50(2), 265278.CrossRefGoogle Scholar
Giacardi, L., & Roero, C. S. (1996). La nascita della Mathesis (1895–1907). In Giacardi, L., and Roero, C. S., editors. Dal Compasso al Computer. Torino, Italy: Associazione Mathesis.Google Scholar
Giudice, F. (1899). Sulla fusione della geometria piana e solida. Periodico di Matematica, 14, 3436.Google Scholar
Gray, J. J., & Field, J. (1987). The Geometrical Work of Girard Desargues. New York, NY: Springer-Verlag.Google Scholar
Guggenheimer, H. (1974). The theorem of Menelaus in axiomatic geometry. Geometriae Dedicata, 3, 257261.CrossRefGoogle Scholar
Hall, M. (1943). Projective planes. Transactions of the American Mathematical Society, 54, 229277.CrossRefGoogle Scholar
Hallett, M. (2008). Reflections on the purity of method in Hilbert’s Grundlagen der Geometrie. In Mancosu, P., editor. The Philosophy of Mathematical Practice. Oxford: Oxford University Press, pp. 198255.CrossRefGoogle Scholar
Hallett, M., & Majer, U., editors. (2004). David Hilbert’s Lectures on the Foundations of Geometry, 1891–1902. Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
Hamel, G. (1903). Über die Geometrieen, in denen die Geraden die Kürzesten sind. Mathematische Annalen, 57, 231264.CrossRefGoogle Scholar
Hartshorne, R. (1967). Foundations of Projective Geometry, Vol. 1966/67 of Lecture Notes, Harvard University. New York, NY: W. A. Benjamin, Inc.Google Scholar
Hartvigson, Z. R. (1974). A non-Desarguesian space geometry. Fundamenta Mathematicae, 86, 143147.CrossRefGoogle Scholar
Heath, T. (1921). A History of Greek Mathematics, Vol. I. Oxford, UK: Clarendon Press. ISBN 0-486-24073-8.Google Scholar
Hilbert, D. (1899). Grundlagen der Geometrie. Leipzig, Germany: B.G. Teubner.Google Scholar
Hilbert, D. (1901). Mathematische Probleme. Archiv der Mathematik und Physik (3rd series), 1, 4463, 213–237. English translation by M.W. Newson in the Bulletin of the American Mathematical Society, 8, 437–479.253–297, 1902.Google Scholar
Hilbert, D. (1905a). Logische Principien des mathematischen Denkens. Vorlesung, Sommersemester 1905. Lecture notes by Max Born. Unpublished manuscript, 277 pp. Niedersächsische Staats-und Universitätsbibliothek Göttingen, Handschriftenabteilung, Cod. Ms. D. Hilbert 558a.Google Scholar
Hilbert, D. (1905b). Logische Principien des mathematischen Denkens. Vorlesung, Sommersemester 1905. Lecture notes by Ernst Hellinger. Unpublished manuscript, 277 pp. Bibliothek, Mathematisches Institut, Universität Göttingen.Google Scholar
Hilbert, D. (1971). Foundations of Geometry. La Salle, IL: Open Court. English translation of Grundlagen der Geometrie (B.G. Teubner, Leipzig, 1899), by L. Unger.Google Scholar
Hilbert, D. (1976). Mathematical problems. In Browder, F., editor. Mathematical Developments Arising from Hilbert Problems, Vol. 28 of Proceedings of Symposia in Pure Mathematics. Providence, RI: American Mathematical Society, pp. 134. Translated by M.W. Newson. Originally published in 1900.Google Scholar
Hilbert, D. (1992). Natur und mathematisches Erkennen. Basel, Switzerland: Birkhäuser. Vorlesungen, 19191920.Google Scholar
Hilbert, D., & Cohn-Vossen, S. (1952). Geometry and the Imagination. New York, NY: Chelsea Publishing Company. Translated by P. Neményi.Google Scholar
Hon, G., & Goldstein, B. (2008). From Summetria to Symmetry: The Making of a Revolutionary Scientific Concept. Dordrecht: Springer.CrossRefGoogle Scholar
Isaacson, D. (1996). Arithmetical truth and hidden higher-order concepts. In Hart, W. D., editor. The Philosophy of Mathematics. New York: Oxford University Press, pp. 203224. First published in Logic Colloquium ’85, the Paris Logic Group (eds.), Amsterdam: North-Holland, 1987, pp. 147–169.Google Scholar
Joussen, J. (1966). Die Anordnungsfähigkeit der freien Ebenen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 29, 137184.CrossRefGoogle Scholar
Kahn, J. (1980). Locally projective-planar lattices which satisfy the bundle theorem. Mathematische Zeitschrift, 1750(3), 219247.CrossRefGoogle Scholar
Kalhoff, F. (1988). Eine Kennzeichnung anordnungsfähiger Ternärkörper. Journal of Geometry, 310(1–2), 100113.CrossRefGoogle Scholar
Klein, F. (1873). Über die sogenannte Nicht-Euklidische Geometrie. Mathematische Annalen, 6, 112145.CrossRefGoogle Scholar
Klein, F. (1953). Elementary Mathematics from an Advanced Standpoint. Geometry. New York, NY: Dover. Translated from the third German edition by E. R. Hedrick and C. A. Noble, Macmillan, New York, 1939.Google Scholar
Knorr, W. R. (1993). The Ancient Tradition of Geometric Problems. New York, NY: Dover Publications. Corrected reprint of the 1986 original.Google Scholar
Kreisel, G. (1980). Kurt Gödel. Biographical Memoirs of Fellows of the Royal Society, 26, 149224.Google Scholar
Kreuzer, A. (1996). Locally projective spaces which satisfy the bundle theorem. Journal of Geometry, 560(1–2), 8798.CrossRefGoogle Scholar
Lazzeri, G. (1899). Note alla discussione della prima questione trattata dal congresso. Periodico di Matematica, 14, 117124.Google Scholar
Lazzeri, G. (1904). A proposito dell’inchiesta fatta dall’associazione Mathesis sulla fusione della geometria piana con la solida. Periodico di Matematica, 19, 233240.Google Scholar
Lazzeri, G., & Bassani, A. (1898). Elementi di Geometria (second edition). Livorno, Italy: Raffaello Giusti. First edition 1891.Google Scholar
Legendre, A.-M. (1794). Élements de Geometrie. Paris, France: Firmin Didot.Google Scholar
Levi, F. M. (1939). On a fundamental theorem of geometry. Journal of the Indian Mathematical Society, 34, 8292.Google Scholar
Loria, G. (1899). La fusione della planimetria con la stereometria (una pagina di storia contemporanea). Periodico di Matematica, 15, 17.Google Scholar
Loria, G. (1905). Sur l’enseignement des mathématiques élémentaires en Italie. L’Enseignement Mathématique, 7, 1120.Google Scholar
Manara, C. F., & Spoglianti, M. (1977). La idea di iperspazio: Una dimenticata polemica tra G. Peano, C. Segre, e G. Veronese. Memorie della Accademia Nazionale di Scienze, Lettere e Arti, di Modena (series 6), 19, 109129.Google Scholar
Mancosu, P. (1996). Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Mancosu, P. (1998). From Brouwer to Hilbert. New York, NY: Oxford University Press.Google Scholar
Mancosu, P., editor. (2008). The Philosophy of Mathematical Practice. Oxford: Oxford University Press.CrossRefGoogle Scholar
Mancosu, P., & Arana, A. (2010). Descartes and the cylindrical helix. Historia Mathematica, 370(3), 403427.CrossRefGoogle Scholar
Marchisotto, E. A., & Smith, J. T. (2007). The Legacy of Mario Pieri in Geometry and Arithmetic. Boston, MA: Birkhäuser Boston Inc. With a foreword by Ivor Grattan-Guinness.Google Scholar
McCleary, J. (1982). An application of Desargues’ theorem. Mathematics Magazine, 550(4), 233235.CrossRefGoogle Scholar
Méray, C. (1874). Nouveaux Eléments de Géométrie. Paris, France: Savy.Google Scholar
Möbius, A. F. (1827). Der Barycentrische Calcul. Leipzig, Germany: Johann Ambrosius Barth. Reprinted in Gesammelte Werke, Vol. 1, edited by R. Baltzer, S. Hirzel, Leipzig, 1885, pp. 1–388.Google Scholar
Monge, G. (1795). Leçons à l’École Normale de l’An III. In Dhombres, J., editor. L’École Normale de l’An III, Leçons de Mathématiques, Laplace-Lagrange-Monge. Paris, France: Dunod.Google Scholar
Moore, E. H. (1902). On the projective axioms of geometry. Transactions of the American Mathematical Society, 30(1), 142158.CrossRefGoogle Scholar
Moulton, F. R. (1902). A simple non-Desarguesian plane geometry. Transactions of the American Mathematical Society, 30(2), 192195.CrossRefGoogle Scholar
Pagin, P. (2009). Compositionality, understanding, and proofs. Mind, 118, 713737.CrossRefGoogle Scholar
Palatini, F. (1897–1898). Osservazioni sulla Nota “Pro fusione” del Prof. de Amicis. Bollettino della Mathesis, 20(5), 120124.Google Scholar
Palatini, F. (1899). Una conversazione coi fusionisti. Periodico di Matematica, 14, 205208.Google Scholar
Palmieri, P. (2009). Superposition: On Cavalieri’s practice of mathematics. Archive for History of Exact Sciences, 630(5), 471495.CrossRefGoogle Scholar
Pambuccian, V. (2009). A reverse analysis of the Sylvester-Gallai theorem. Notre Dame Journal of Formal Logic, 500(3), 245260.Google Scholar
Panza, M., & Malet, A. (2010). Wallis on indivisibles. Draft.Google Scholar
Pappus. (1876–1878). Collectionis Quae Supersunt. Berlin, Germany: Weidman. 3 vols. Edited and translated into Latin by F. Hultsch.Google Scholar
Pasch, M. (1882). Vorlesungen über neuere Geometrie. Leipzig, Germany: B.G. Teubner.Google Scholar
Peano, G. (1891). Osservazioni del Direttore sull’articolo precedente. Rivista di Matematica, 1, 6669.Google Scholar
Peano, G. (1894). Sui fondamenti della geometria. Rivista di Matematica, 4, 5190.Google Scholar
Peckhaus, V. (1990). Hilbertprogramm und kritische Philosophie. Göttingen, Germany: Vandenhoeck and Ruprecht.Google Scholar
Plücker, J. (1830). Über ein neues Coordinatensystem. Journal für die reine und angewandte Mathematik, 5, 136.Google Scholar
Pogorelov, A. (1979). Hilbert’s Fourth Problem. Washington, DC: V. H. Winston & Sons. Translated by Richard A. Silverman.Google Scholar
Poincaré, H. (1902). Review of Hilbert’s Grundlagen der Geometrie. Journal des Savants, 252–271. Modification of an earlier version published in Bulletin des Sciences Mathématiques, vol. 26, 1902, pp. 249272.Google Scholar
Poincaré, H. (1912). Pourquoi l’espace a trois dimensions. Revue de Métaphysique et de Morale, 200(4), 483504.Google Scholar
Poncelet, J.-V. (1822). Traité des Propriétés Projectives des Figures. Paris, France: Bachelier.Google Scholar
Russell, B. (1903). The Principles of Mathematics. Cambridge, UK: Cambridge University Press.Google Scholar
Russell, B. (1990a). Note on Order [1898]. In Griffin, N., and Lewis, A. C., editors. Philosophical Papers 1896–99. London: Unwin Hyman.Google Scholar
Russell, B. (1990b). Notes on Geometry [1899]. In Griffin, N., and Lewis, A. C., editors. Philosophical Papers 1896–99. London: Unwin Hyman.Google Scholar
Sakarovitch, J. (1989). La géométrie descriptive après Monge. In Dhombres, J., editor. L’École Normale de l’An III, Leçons de Mathématiques, Laplace-Lagrange-Monge. Paris, France: Dunod, pp. 583590.Google Scholar
Schlimm, D. (2010). Pasch’s philosophy of mathematics. The Review of Symbolic Logic, 30(1), 93118.CrossRefGoogle Scholar
Schmid, A.-F., editor. Bertrand Russell/Louis Couturat (1897–1913); Correspondance sur la philosophie, la logique et la politique. Paris, France: Kimé.Google Scholar
Schneider, T., & Stroppel, M. (2007). Automorphisms of Hilbert’s non-desarguesian affine plane and its projective closure. Advances in Geometry, 70(4), 541552.CrossRefGoogle Scholar
Schur, F. (1901). Ueber die Grundlagen der Geometrie. Mathematische Annalen, 550(2), 265292.CrossRefGoogle Scholar
Segre, C. (1891). Su alcuni indirizzi nelle investigationi geometriche: Osservazioni dirette ai miei studenti. Rivista di Matematica, 1, 4266.Google Scholar
Seidenberg, A. (1962). Lectures In Projective Geometry. Princeton: D. Van Nostrand.Google Scholar
Sperner, E. (1954). Ein gruppentheoretischer Beweis des Satzes von Desargues in der absoluten Axiomatik. Archiv der Mathematik, 5, 458468.CrossRefGoogle Scholar
Steiner, J. (1832). Systematische Entwickelung der Abhängigkeit geometrischer Gestalten von einander. Berlin: G. Fincke.Google Scholar
Stroppel, M. (2010). Early explicit examples of non-desarguesian plane geometries. Technical Report 2010-013, Stuttgarter Mathematische Berichte, Stuttgart. Forthcoming in the Journal of Geometry.Google Scholar
Tarski, A. (1959). What is elementary geometry? In Henkin, L., Suppes, P., and Tarski, A., editors. The Axiomatic Method. Amsterdam: North-Holland.Google Scholar
Taton, R. (1951a). L’Oeuvre Mathématique de G. Desargues. Paris, France: PUF. Second editionwith postface, J. Vrin, Paris, 1981.Google Scholar
Taton, R. (1951b). L’Oeuvre Scientifique de Monge. Paris: PUF.Google Scholar
Taton, R. (1951c). Découverte d’un exemplaire original du “Brouillon project” sur les Coniques de Desargues. Revue d’Histoire des Sciences et de Leurs Applications, 40(2), 176181.Google Scholar
Toepell. (1986a). Über die Entstehung von David Hilberts “Grundlagen der Geometrie”. Göttingen, Germany: Vandenhoeck and Ruprecht.Google Scholar
Toepell, M. (1986b). On the origins of David Hilbert’s Grundlagen der Geometrie. Archive for History of Exact Sciences, 350(4), 329344.CrossRefGoogle Scholar
Torricelli, E. (1919–1944). Opera Geometrica. In Loria, G., and Vassura, G., editors. Opere di Evangelista Torricelli. Faenza, Italy: Stabilimento Tipografico Montanari. Italian translation by Luigi Belloni in Opere Scelte di Evangelista Torricelli, Torino, UTET, 1975.Google Scholar
Ulivi, E. (1977). Mode didattiche: il fusionismo. Archimede, 29, 211216.Google Scholar
Valerio, L. (1606). Quadratura Parabolae per Simplex Falsum. Rome: Lepido Facii.Google Scholar
Van Cleve, J., & Frederick, R. E., editors. (1991). The Philosophy of Right and Left: Incongruent Counterparts And The Nature Of Space. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Veblen, O. (1904). A system of axioms for geometry. Transactions of the American Mathematical Society, 50(3), 343384.CrossRefGoogle Scholar
Veblen, O., & Young, J. W. (1916). Projective Geometry, Vol. 1. New York, NY: Blaisdell.Google Scholar
Veronese, G., & Cazzaniga, P. (1897). Elementi di Geometria, ad uso dei licei e degli istituti tecnici (primo biennio). Verona, Italy: Fratelli Drucker.Google Scholar
Vitrac, B. (2000). Euclide, Les Élements, Volume IV, Livres XI–XIII: Géometrie des Solides, Traduction et Commentaire par Bernard Vitrac. Paris, France: PUF.Google Scholar
von Staudt, K. G. C. (1847). Geometrie der Lage. Nürnberg, Germany: F. Korn.Google Scholar
Webb, J. (1980). Mechanism, Mentalism, and Metamathematics. Dordrecht, The Netherlands: Reidel.CrossRefGoogle Scholar
Webb, J. (2006). Hintikka on Aristotelian constructions, Kantian intuitions, and Peircian theorems. In Auxier, R. E., and Hahn, L. E., editors. The Philosophy of Jaakko Hintikka, Vol. XXX of The Library of Living Philosophers. Chicago, IL: Open Court.Google Scholar
Whitehead, A. N. (1906). The Axioms of Projective Geometry. London: Cambridge University Press.Google Scholar
Whiteside, D. T., editor. (1967). The Mathematical Papers of Isaac Newton. Vol. I: 1664–1666. London: Cambridge University Press.Google Scholar
Wiener, H. (1892). Über Grundlagen und Aufbau der Geometrie. Jahresbericht der Deutschen Mathematiker-Vereinigung, 1, 4548.Google Scholar