Skip to main content
Log in

Quantum Mechanics: Modal Interpretation and Galilean Transformations

Foundations of Physics Aims and scope Submit manuscript

Abstract

The aim of this paper is to consider in what sense the modal-Hamiltonian interpretation of quantum mechanics satisfies the physical constraints imposed by the Galilean group. In particular, we show that the only apparent conflict, which follows from boost-transformations, can be overcome when the definition of quantum systems and subsystems is taken into account. On this basis, we apply the interpretation to different well-known models, in order to obtain concrete examples of the previous conceptual conclusions. Finally, we consider the role played by the Casimir operators of the Galilean group in the interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lombardi, O., Castagnino, M.: A modal-Hamiltonian interpretation of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 39, 380–443 (2008)

    Article  MathSciNet  Google Scholar 

  2. Castagnino, M., Lombardi, O.: The role of the Hamiltonian in the interpretation of quantum mechanics. J. Phys. Conf. Ser. 28, 012014 (2008)

    Article  ADS  Google Scholar 

  3. van Fraassen, B.C.: A formal approach to the philosophy of science. In: Colodny, R. (ed.) Paradigms and Paradoxes: The Philosophical Challenge of the Quantum Domain, pp. 303–366. University of Pittsburgh Press, Pittsburgh (1972)

    Google Scholar 

  4. van Fraassen, B.C.: Semantic analysis of quantum logic. In: Hooker, C.A. (ed.) Contemporary Research in the Foundations and Philosophy of Quantum Theory, pp. 80–113. Reidel, Dordrecht (1973)

    Google Scholar 

  5. van Fraassen, B.C.: The Einstein-Podolsky-Rosen paradox. Synthese 29, 291–309 (1974)

    Article  Google Scholar 

  6. Dieks, D., Vermaas, P.E.: The Modal Interpretation of Quantum Mechanics. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  7. Harshman, N.L., Wickramasekara, S.: Galilean and dynamical invariance of entanglement in particle scattering. Phys. Rev. Lett. 98, 080406 (2007)

    Article  ADS  Google Scholar 

  8. Harshman, N.L., Wickramasekara, S.: Tensor product structures, entanglement, and particle scattering. Open Sys. Inf. Dyn. 14, 341–351 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MATH  MathSciNet  Google Scholar 

  10. Ballentine, L.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  11. Tinkham, M.: Group Theory and Quantum Mechanics. Dover, New York (1992)

    Google Scholar 

  12. Meijer, P., Bauer, E.: Group Theory. The Application to Quantum Mechanics. Dover, New York (2004)

    Google Scholar 

  13. Weinberg, S.: The Quantum Theory of Fields, vol. I: Foundations. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  14. Bose, S.K.: The Galilean group in 2+1 space-times and its central extension. Commun. Math. Phys. 169, 385–395 (1995)

    Article  MATH  ADS  Google Scholar 

  15. Brading, K., Castellani, E.: Symmetries and invariances in classical physics. In: Butterfield, J., Earman, J. (eds.) Philosophy of Physics, pp. 1331–1367. North-Holland, Amsterdam (2007)

    Chapter  Google Scholar 

  16. Cohen-Tannoudji, C., Diu, B., Lalöe, F.: Quantum Mechanics. Wiley, New York (1977)

    Google Scholar 

  17. Laue, H.: Space and time translations commute, don’t they? Am. J. Phys. 64, 1203–1205 (1996)

    Article  ADS  Google Scholar 

  18. Peleg, Y., Pnini, R., Zaarur, E.: Theory and Problems of Quantum Mechanics. McGraw-Hill, New York (1998)

    Google Scholar 

  19. Tung, W.K.: Group Theory in Physics. World Scientific, Singapore (1985)

    Google Scholar 

  20. Wigner, E.P.: On the unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939)

    Article  MathSciNet  Google Scholar 

  21. Bargmann, V.: On unitary ray representations of continuous groups. Ann. Math. 59, 1–46 (1954)

    Article  MathSciNet  Google Scholar 

  22. Lévy-Leblond, J.M.: Galilei group and nonrelativistic quantum mechanics. J. Math. Phys. 4, 776–788 (1963)

    Article  MATH  ADS  Google Scholar 

  23. Dynkin, E.B.: Calculation of the coefficients in the Campbell-Hausdorff formula. Dokl. Akad. Nauk 57, 323–326 (1947)

    MATH  MathSciNet  Google Scholar 

  24. Greiner, W., Reinhardt, J.: Field Quantization. Springer, Berlin (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olimpia Lombardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardenghi, J.S., Castagnino, M. & Lombardi, O. Quantum Mechanics: Modal Interpretation and Galilean Transformations. Found Phys 39, 1023–1045 (2009). https://doi.org/10.1007/s10701-009-9313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9313-x

Keywords

Navigation