Skip to main content
Log in

An axiomatization of Choquet expected utility with cominimum independence

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

This paper proposes a class of independence axioms for simple acts. By introducing the \({\mathcal {E}}\)-cominimum independence axiom that is stronger than the comonotonic independence axiom but weaker than the independence axiom, we provide a new axiomatization theorem of simple acts within the framework of Choquet expected utility. Furthermore, in order to provide the axiomatization of simple acts, we generalize Kajii et al. (J Math Econ 43:218–230, 2007) into an infinite state space. Our axiomatization theorem relates Choquet expected utility to multi-prior expected utility through the core of a capacity that is explicitly derived within our framework. Our result in this paper also derives Gilboa (Econometrica 57:1153–1169, 1989), Eichberger and Kelsey (Theory Decis 46:107–140, 1999), and Rohde (Soc Choice Welf 34:537–547, 2010) as a corollary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For the definitions of comonotonic independence and comonotonic additivity, see Sect. 3. See also Schmeidler (1986).

  2. For the definitions of cominimum operators and comonotonic operators, see Sect. 3.

  3. In Sect. 3, we provide the definition of a collection of sets \({\mathcal {E}}\) in detail.

  4. In Sect. 5, we define the core of a capacity.

  5. In Sect. 5, we explain Eichberger and Kelsey (1999) representation in detail. For the definition of E-capacities, see Footnote 15.

  6. See Epstein (1999), Zhang (1999), or Asano (2006) that use a \(\lambda \)-system for a collection of unambiguous events.

  7. See the proof of Proposition 3 in Kajii et al. (2007).

  8. For example, see Schmeidler (1986).

  9. In Kajii et al. (2007), the term “complete” is adopted from an analogy to a complete graph. For \(T \in \mathcal {F}\), let us consider an undirected graph with a vertex set \(T\) where \(\{ \omega , \omega ^{\prime } \} \subseteq T\) is an edge if there exists \(E \in {\mathcal {E}}\) such that \(\{ \omega , \omega ^{\prime } \} \subseteq E \subseteq T\). Then, this is a complete graph if and only if \(T\) is \({\mathcal {E}}\)-complete. See Kajii et al. (2007).

  10. The asymmetric (\(\succ \)) and symmetric (\(\sim \)) parts of \(\succeq \) are defined as usual. For details, see Kreps (1988).

  11. Equivalently, for two acts \(f, \, g \in L_0,\,f\) and \(g\) are said to be comonotonic if there are no \(\omega \) and \(\omega '\) such that \(f(\omega ) \succ f(\omega ')\) and \(g(\omega ') \succ g(\omega )\). See Schmeidler (1989).

  12. A binary relation \(\succeq \) is a weak order if and only if \(\succ \) is asymmetric and negatively transitive, whereas a binary relation \(\succ \) is asymmetric if for all \(f,\,g\in L_{0},\,f\succ g\Rightarrow g\nsucc f\) and it is negatively transitive if for all \(f,\,g,\,h\in L_{0},\,f\nsucc g\) and \(g \nsucc h \Rightarrow f \nsucc h\).

  13. To be precise, the notion of being simple-complete should be introduced. See Sect. 5 (Definition 5 and Theorem 3) for details.

  14. Certainty-independence states that for all \(f,\,g \in L_0\), all \(h \in L_c\), and all \(\alpha \in [0,1],\,f \succ g\) \(\Leftrightarrow \) \(\alpha f + (1-\alpha ) h \succ \alpha g +(1-\alpha ) h\).

  15. Let \(\{E_1, \ldots , E_n \}\) be a partition of \(\varOmega \). Let \({\mathcal {E}}=\{E_1,\ldots , E_n \}\). A capacity \(v \in {\mathbb {R}}^{\mathcal {F}}\) is called an E-capacity if there exist a finitely additive probability measure \(\pi \), a real number \(\varepsilon \in [0,1]\), and a finitely additive probability measure \(\rho \) on \({\mathcal {E}}\) such that \(v=(1-\varepsilon ) \pi + \varepsilon \sum _{i=1}^n \rho (E_i) u_{E_i}\), where \(u_{E_i}\) denotes the unanimity game on \(E_i\) for each \(i\).

  16. Let \(\mathcal {M}(\varOmega )\) be the set of all probability measures and let \(\varepsilon \in [0,1]\). Then, the set of probability measures defined by \(\{ (1-\varepsilon ) p + \varepsilon q \, |\, q \in \mathcal {M}(\varOmega ) \}\) is called the \(\varepsilon \)-contamination of \(p\), where \(p\) is the true probability measure. Our paper derives a set of coefficients \(\varepsilon _1, \ldots , \varepsilon _n\) endogenously.

  17. We are grateful to an anonymous referee who pointed out that Lemma 6 is very similar to a result in Chateauneuf and Jaffray (1989).

References

  • Anscombe, F., & Aumann, R. J. (1963). A definition of subjective probability. Annals of Mathematical Statistics, 34, 199–205.

    Article  Google Scholar 

  • Asano, T. (2006). Portfolio inertia under ambiguity. Mathematical Social Sciences, 52, 223–232.

    Article  Google Scholar 

  • Chateauneuf, A., & Jaffray, J.-Y. (1989). Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Mathematical Social Sciences, 17, 263–283.

    Article  Google Scholar 

  • Eichberger, J., & Kelsey, D. (1999). E-capacities and the Ellsberg paradox. Theory and Decision, 46, 107–140.

    Article  Google Scholar 

  • Ellsberg, D. (1961). Risk ambiguity, and the savage axioms. Quarterly Journal of Economics, 75, 643–669.

    Article  Google Scholar 

  • Epstein, L. G. (1999). A definition of uncertainty aversion. Review of Economic Studies, 66, 579–608.

    Article  Google Scholar 

  • Fehr, E., & Schmidt, K. M. (1999). A theory of fairness competition and cooperation. Quarterly Journal of Economics, 114, 817–868.

    Article  Google Scholar 

  • Gilboa, I. (1989). Expectation and variation in multi-period decisions. Econometrica, 57, 1153–1169.

    Article  Google Scholar 

  • Gilboa, I., & Schmeidler, D. (1989). Maxmin expected utility with non-unique priors. Journal of Mathematical Economics, 18, 141–153.

    Article  Google Scholar 

  • Gilboa, I., & Schmeidler, D. (1994). Additive representation of non-additive measures and the Choquet integral. Annals of Operations Research, 52, 43–65.

    Article  Google Scholar 

  • Kajii, A., Kojima, H., & Ui, T. (2007). Cominimum additive operators. Journal of Mathematical Economics, 43, 218–230.

    Article  Google Scholar 

  • Kreps, D. (1988). Notes on the theory of choice. Boulder: Westview Press.

    Google Scholar 

  • Rohde, K. I. M. (2010). A preference foundation for Fehr and Schmidt’s model of inequality aversion. Social Choice and Welfare, 34, 537–547.

    Article  Google Scholar 

  • Savage, L. J. (1972). The foundation of statistics. New York: Dover Publications. (First published 1954).

    Google Scholar 

  • Schmeidler, D. (1986). Integral representation without additivity. Proceedings of the American Mathematical Society, 97, 255–261.

    Article  Google Scholar 

  • Schmeidler, D. (1989). Subjective probability and expected utility without additivity. Econometrica, 57, 571–587.

    Google Scholar 

  • Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press.

    Google Scholar 

  • Shapley, L. S. (1953). A value for \(n\)-person games. In H. Kuhn & A. Tucker (Eds.), Contributions to the theory of games (Vol. 2, pp. 307–317). Princeton: Princeton University Press.

    Google Scholar 

  • Strassen, V. (1964). Messfehler und Information. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2, 273–305.

    Article  Google Scholar 

  • von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton University Press.

    Google Scholar 

  • Zhang, J. (1999). Quantitative probabilities on \(\lambda \)-systems. Mathematical Social Sciences, 38, 11–20.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to appreciate an anonymous referee for his or her comments and suggestions that have improved this paper substantially. We are grateful to Takashi Ui for his comments and advice on this work. This research was financially supported by the JSPS KAKENHI Grant Numbers 25380239, 23730299, 23000001 and 22530186, and the Joint Research Program of KIER. Of course, we are responsible for any remaining errors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Asano.

Appendix

Appendix

1.1 Appendix 1

As defined in Sect. 2, \(\varOmega \) is a non-empty finite or infinite set, \(\varSigma \) is a non-empty algebra of subsets of \(\varOmega ,\,{\mathbb {R}}^{\varOmega }= \{ x|\, x: \varOmega \rightarrow {\mathbb {R}} \}\) denotes the set of all real-valued functions on \(\varOmega \), and \(\mathcal {F}\) is the collection of all non-empty subsets of \(\varOmega \).

A set function \(v:2^{\varOmega } \rightarrow {\mathbb {R}}\) with \(v(\emptyset )=0\) is \(k\)-monotone for \(k \ge 2\) if \(v \left( \cup _{i=1} ^k A_i \right) \ge \sum _{ \left\{ I: \emptyset \ne I \subset \left\{ 1, \ldots , k \right\} \right\} } (-1)^{|I|+1} v \left( \cap _{i \in I} A_i \right) \) for all \(A_1,\ldots , A_k \in 2^{\varOmega }\), it is a capacity if \(v(E) \le v(F)\) for all \(E \subseteq F\) and \(v(\varOmega )=1\), and it is totally monotone, if it is non-negative and \(k\)-monotone for all \(k \ge 2\). A totally monotone game \(v\) with \(v(\varOmega )=1\) is called a belief function.

Let \(\varOmega \) be finite. For \(T \in \mathcal {F}\), let \(u_T \in {\mathbb {R}}^{\mathcal {F}}\) be the unanimity game on \(T\) that is defined by the following: \(u_T(S)=1\) if \(T \subseteq S\) and \(u_T(S) =0\) otherwise. The following lemma has been proved by Shapley (1953).

Lemma 3

(Shapley 1953) Let \(\varOmega \) be finite. Collection \(\{u_{T}\}_{T\in \mathcal {F}}\) is a linear base for \({\mathbb {R}}^{\mathcal {F}}\). The unique collection of coefficients \(\left\{ \beta _T \right\} _{T \in \mathcal {F}}\) satisfying the form

$$\begin{aligned} v= \sum _{T \in \mathcal {F}} \beta _T u_T, \end{aligned}$$
(5)

or equivalently \(v(E)= \sum _{T \subseteq E} \beta _T\) for all \(E \in \mathcal {F}\), is provided by \(\beta _{T}=\sum _{E\subseteq T}(-1)^{|T|-|E|} v(E)\).

Collection \(\{ \beta _T \}_{T \in \mathcal {F}}\) is called the Möbius inversion of \(v\). A totally monotone game \(v\) can be characterized by coefficients \(\beta _T\) for all \(T \in \mathcal {F}\). The following lemma is shown by Shafer (1976).

Lemma 4

(Shafer 1976) For any \(v \in {\mathbb {R}}^{\mathcal {F}},\,v\) is totally monotone if and only if in unique representation (5), \(\beta _T\) is non-negative for all \(T \in \mathcal {F}\).

Gilboa and Schmeidler (1994) prove the following lemma with respect to the additivity of Choquet integrals through Möbius inversions.

Lemma 5

Let \(x \in {\mathbb {R}}^{\varOmega }\) and let \(v= \sum _{T \in \mathcal {F}} \beta _T u_T \in {\mathbb {R}}^{\mathcal {F}}\). Then,

$$\begin{aligned} \int x \mathrm{{d}}v= \sum _{T \in \mathcal {F}} \beta _T \int x \mathrm{{d}}u_T = \sum _{T \in \mathcal {F}} \beta _T \min _T x. \end{aligned}$$

The following lemma is a special case of Proposition 3 in Chateauneuf and Jaffray (1989).Footnote 17

Lemma 6

Let \(v=\sum _{T \in \mathcal {F}} \beta _T u_T\). Then, for all \(X,\, Y \in \mathcal {F}\),

$$\begin{aligned} v(X \cup Y) + v(X \cap Y) -v(X) - v(Y) = \sum _{T \in \mathcal {F}_{X,Y}} \beta _T, \end{aligned}$$

where \(\mathcal {F}_{X,Y} \equiv \{T\,|\, T \cap (X \cap Y^c) \ne \emptyset ,\,T \cap (X^c \cap Y) \ne \emptyset \), and \(T \subseteq X \cup Y \}\).

Kajii et al. (2007) characterize the Möbius inversion of a game \(v\) by \(v\)’s \({\mathcal {E}}\)-cominimum additivity.

Theorem 4

(Kajii et al. 2007) Let \(\varOmega \) be finite. Let \(v= \sum _{T \in \mathcal {F}} \beta _T u_T \in {\mathbb {R}}^{\mathcal {F}}\) be a game. \(v\) is \({\mathcal {E}}\)-cominimum additive if and only if \(\beta _T =0\) for any \(T \notin \Upsilon ({\mathcal {E}})\). If \({\mathcal {E}}\) is complete, that is, \({\mathcal {E}} = \Upsilon ({\mathcal {E}}),\,v\) is \({\mathcal {E}}\)-cominimum additive if and only if \(\beta _T =0\) for any \(T \notin {\mathcal {E}}\).

1.2 Appendix 2: Proofs

1.2.1 Proof of Lemma 1

Proof

Suppose that for all pairwise \({\mathcal {E}}\)-cominimum functions \(a, b, c \in \varPhi _{\varSigma }\) and for all \(\alpha \in (0,1),\,I(a) \ge I(b)\) implies \(I(\alpha a+(1-\alpha )c) \ge I(\alpha b+(1-\alpha )c) \). First, let us prove the following claim: if \(x, y \in \varPhi _{\varSigma }\) are \({\mathcal {E}}\)-cominimum and \(\alpha \in (0,1)\), then \(I(\alpha x+(1-\alpha )y)=\alpha I(x)+(1-\alpha )I(y)\). Indeed, for any \(\varepsilon >0,\,(I(x)+\varepsilon )1_{\varOmega }\) satisfies \(I((I(x)+\varepsilon )1_{\varOmega })>I(x)\), and \((I(y)+\varepsilon )1_{\varOmega }\) satisfies \(I((I(y)+\varepsilon )1_{\varOmega })>I(y)\) by the assumption that \(I(\lambda 1_{\varOmega })=\lambda \). Hence, \(\alpha I(x)+(1-\alpha )I(y)+\varepsilon = I(\alpha (I(x)+\varepsilon )1_{\varOmega }+(1-\alpha )(I(y)+\varepsilon )1_{\varOmega }) > I(\alpha x+(1-\alpha )(I(y)+\varepsilon )1_{\varOmega })> I(\alpha x+(1-\alpha )y) \). The first inequality holds, since \((I(x)+\varepsilon )1_{\varOmega },\,x\), and \((I(y)+\varepsilon )1_{\varOmega }\) are pairwise \({\mathcal {E}}\)-cominimum and the second inequality holds, since \((I(y)+\varepsilon )1_{\varOmega },\,y\), and \(x\) are pairwise \({\mathcal {E}}\)-cominimum. Since \(\varepsilon \) is any positive number, we obtain that \(\alpha I(x)+(1-\alpha )I(y) \ge I(\alpha x+(1-\alpha )y)\). Furthermore, the converse inequality can be shown by using a similar argument as that for \(\varepsilon <0\). Therefore, it is proved that \(I(\alpha x+(1-\alpha )y)=\alpha I(x)+(1-\alpha )I(y)\). Then, our claim is proved. Next, let us use this claim twice. First, let \(\alpha =1/2,\,x=2a\), and \(y=0\). Then, \(I(a)=(1/2)I(2a)\) for all \(a \in \varPhi _{\varSigma }\). Similarly, let \(\alpha =1/2,\,y=2b\), and \(x=0\). Then, \(I(b)=(1/2)I(2b)\) for all \(b \in \varPhi _{\varSigma }\). Second, let \(\alpha =1/2,\,x=2a\), and \(y=2b\). Then, for all \(a,\, b \in \varPhi _{\varSigma },\,I(a+b)=(1/2)I(2a)+(1/2)I(2b)=I(a)+I(b)\). Now we show Lemma 1. \(\square \)

1.2.2 Proof of Lemma 2

Proof

Since the proof for (ii) \(\Rightarrow \) (i) has been already provided in Sect. 3, we prove the converse.

(i) \(\Rightarrow \) (ii). Let \(\varOmega \) be an arbitrary infinite set and \({\mathcal {E}}=\{E_1, E_2, \dots , E_n\} \subseteq \mathcal {F}\) with \(|E_i|\ge 2\) for \(i=1,\ldots ,n\) be a collection of events. Denote by \(\varPi \) the set of all finite partitions of \( \varOmega \) and by \(\varPi _{{\mathcal {E}}}\) the set of all finite partitions of \( \varOmega \), which separate each \(E_i\) for \(i=1,\ldots ,n\) to at least two non-empty subsets. That is, if \(\mathcal {P}=\{P_1, P_2, \dots , P_k\} \in \varPi _{{\mathcal {E}}}\) is a partition of \(\varOmega \), then for every \(E_i\) for \(i=1,\ldots ,n\), there are at least two non-empty sets in \(P_1\cap E_i, P_2 \cap E_i, \dots , P_k \cap E_i\). Fix a partition \(\mathcal {P}=\{P_1, P_2, \dots , P_k\} \in \varPi _{{\mathcal {E}}}\). Let \(\sigma (\mathcal {P}, {\mathcal {E}}) \subseteq \varSigma \) be the algebra generated by \(\mathcal {P}\) and \({\mathcal {E}}\): the smallest algebra containing \(P_1, P_2, \dots , P_k, E_1, E_2,\dots , E_n\). Denote by \(\varPhi _{\sigma (\mathcal {P}, {\mathcal {E}}) }\) the set of all \(\sigma (\mathcal {P}, {\mathcal {E}}) \)-measurable functions in \(\varPhi _{\varSigma }\). Note that \(\bigcup _{\mathcal {P} \in \varPi _{{\mathcal {E}}}} \varPhi _{\sigma (\mathcal {P}, {\mathcal {E}})}=\bigcup _{\mathcal {P} \in \varPi } \varPhi _{\sigma (\mathcal {P}, {\mathcal {E}})} =\varPhi _{\varSigma }\). Let \(\varOmega _{\mathcal {P}, {\mathcal {E}}}\) be the collection of minimal elements of \(\sigma (\mathcal {P}, {\mathcal {E}})\), which constitutes a well defined partition of \(\varOmega \). Note that \(\varOmega _{\mathcal {P}, {\mathcal {E}}}\) is a collection of the subsets of \(\varOmega \), not a set of states. We explain this set \(\varOmega _{\mathcal {P}, {\mathcal {E}}}\) in detail. Let \(E^i_1,\, E^i_2,\, \dots , E^i_{m_i}\) be non-empty sets in \(\sigma (\mathcal {P}, {\mathcal {E}})\) that are subsets of \(E_i\), where \(m_i \ge 2\). That is, \(\{E^i_1, E^i_2, \dots , E^i_{m_i}\}\) constitutes a partition of \(E_i\) for \(i=1,\ldots ,n\). Moreover, denote the non-empty sets in \(\varOmega _{\mathcal {P}, {\mathcal {E}}}\), which are in \((\cup _{1 \le i \le n}E_i)^c\), by \(Q_1, Q_2, \dots , Q_m\). Thus, the collection \(\{E^1_1, E^1_2, \dots , E^1_{m_1}, \dots ,E^i_1, E^i_2, \dots , E^i_{m_i}, \dots , E^n_1, E^n_2, \dots , E^n_{m_n}, Q_1, Q_2, \dots , Q_m\}\) constitutes \(\varOmega _{\mathcal {P}, {\mathcal {E}}}\). Choose one element \(e^i_j\) from each \(E^i_j\) for \(i=1,\ldots ,n\) and \(j=1,\ldots ,m_i\) arbitrarily, and choose \(q_i\) from each \(Q_i\) for \(i=1,\ldots ,m\) arbitrarily. Denote finite set \(\{e^i_j | 1 \le i \le n, 1 \le j \le m_i\} \cup \{q_i | 1 \le i \le m\}\) by \(\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}\), finite set \(\{e^i_j | 1 \le j \le m_i\}\) by \(E^*_i\) for each \(i=1,\ldots ,n\), and finite set \(\{q_i | 1 \le i \le m\}\) by \(Q^*\). Thus, \(\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}=E^*_1 \cup \dots \cup E^*_n \cup Q^*\). Note that by construction, \(\varOmega ^* _{\mathcal {P}, {\mathcal {E}}}\) is a subset of \(\varOmega \). Denote by \({\mathcal {E}}^*\) collection \(\{E^*_1, E^*_2, \dots , E^*_n\}\) and by \(\mathcal {F}_1^*\) the collection of singleton subsets in \(2^{\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}}\). Moreover, denote by \(\varPhi ^*_{\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}}\) the set of real-valued functions on finite set \(\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}\).

Now, we define capacity \(v^*_{\mathcal {P}, {\mathcal {E}}}\) on power set \(2^{\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}}\) as follows: for every \(X \in 2^{\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}},\,v^*_{\mathcal {P}, {\mathcal {E}}}(X)=v(( \cup _{e^i_j \in X} E^i_j) \cup (\cup _{q_i \in X}Q_i) )\). For example, \(v^*_{\mathcal {P}, {\mathcal {E}}}(\emptyset )=0, v^*_{\mathcal {P}, {\mathcal {E}}}(\{e^1_2, q_3\})=v(E^1_2 \cup Q_3), v^*_{\mathcal {P}, {\mathcal {E}}}(E^*_i) =v^*_{\mathcal {P}, {\mathcal {E}}}(\{e^i_1,\dots , e^i_{m_i}\})=v(\cup _{1 \le j \le m_i}E^i_j) =v(E_i)\).

Next, we define a function \(a^*\) on \(\varOmega ^* _{\mathcal {P}, {\mathcal {E}}}\) that corresponds to a function \(a \in \varPhi _{\sigma (\mathcal {P}, {\mathcal {E}})}\). For every \(\sigma (\mathcal {P}, {\mathcal {E}})\)-measurable function \(a \in \varPhi _{\sigma (\mathcal {P}, {\mathcal {E}})}\), define the function \(a^* \in \varPhi ^*_{\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}}\) as follows: for any \(\omega \in \varOmega ^*_{\mathcal {P}, {\mathcal {E}}},\,a^*(\omega )=a(\omega )\) naturally; that is, \(a^*(e^i_j)=a(e^i_j)\) and \(a^*(q_j)=a(q_j)\). The value \(a^*(\omega )\) is the same on each \(E^i_j\) and on each \(Q_j\) regardless of the choice of the representation element, since \(a\) is constant on each \(E^i_j\) and on each \(Q_j\) by the assumption of \(a\) being \(\sigma (\mathcal {P}, {\mathcal {E}})\)-measurable.

Define by \( I^*(a^*)\) the Choquet integral of \(a^*\) with respect to capacity \(v^*_{\mathcal {P}, {\mathcal {E}}}\); that is, \(I^*(a^*) \equiv \int _{\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}}a^* dv^*_{\mathcal {P}, {\mathcal {E}}}\). We show that \(I^*(a^*) = I(a)\) for all \(a \in \varPhi _{\sigma (\mathcal {P}, {\mathcal {E}})}\). Suppose \(a^*(\omega _1) \ge a^*(\omega _2) \ge \dots \ge a^*(\omega _t)\). Since \(a\) is \(\sigma (\mathcal {P},{\mathcal {E}})\)-measurable, it follows that

$$\begin{aligned} I^*(a^*)&= (a^*(\omega _1)-a^*(\omega _2))v^*_{\mathcal {P}, {\mathcal {E}}}(\{\omega _1\}) +(a^*(\omega _2)-a^*(\omega _3))v^*_{\mathcal {P}, {\mathcal {E}}}(\{\omega _1,\omega _2\}) \\&+\,(a^*(\omega _3)-a^*(\omega _4))v^*_{\mathcal {P}, {\mathcal {E}}}(\{\omega _1,\omega _2,\omega _3\}) +\cdots = (a(\omega _1)-a(\omega _2))\\&\times \, v(\cup _{\omega _1 \in X_1 \in \Omega _{\mathcal {P}, {\mathcal {E}}}} X_1) +(a(\omega _2)-a(\omega _3))v(\cup _{\omega _j \in X_j \in \Omega _{\mathcal {P}, {\mathcal {E}}}, (j=1,2)} X_j) \\&+\,(a(\omega _3)-a(\omega _4))v(\cup _{\omega _j \in X_j \in \Omega _{\mathcal {P}, {\mathcal {E}}, (j=1,2,3)}} X_j ) +\cdots =I(a). \end{aligned}$$

Here, we claim that for every \(a,b \in \varPhi _{\sigma (\mathcal {P}, {\mathcal {E}})}\), the condition that \(a\) and \(b\) are \({\mathcal {E}}\)-cominimum on \(\varOmega \) is equivalent to the condition that \(a^*\) and \(b^*\) are \({\mathcal {E}}^*\)-cominimum on \(\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}\). Indeed, suppose that \(a^*\) and \(b^*\) are \({\mathcal {E}}^*\)-cominimum. Then, there exists an \(\omega _i \in \text {argmin}_{\omega \in E^*_i}a^*(\omega ) \cap \text {argmin}_{\omega \in E^*_i} b^*(\omega )\) for every \(i=1,\ldots ,n\). Such an \(\omega _i\) satisfies \(\omega _i \in \text {argmin}_{\omega \in E_i}a(\omega ) \cap \text {argmin}_{\omega \in E_i} b(\omega )\), since \(a \in \varPhi _{\sigma (\mathcal {P}, {\mathcal {E}})}\) is a \(\sigma (\mathcal {P}, {\mathcal {E}}) \)-measurable function. Thus, \(a\) and \(b\) are \({\mathcal {E}}\)-cominimum. The converse also holds similarly. Hence, our claim is shown.

Now, let \(a,b \in \varPhi _{\sigma (\mathcal {P}, {\mathcal {E}})}\) and suppose that \(a^*\) and \(b^*\) are \({\mathcal {E}}^*\)-cominimum. Then, \(a\) and \(b\) are \({\mathcal {E}}\)-cominimum, and thus, \(I(a+b)=I(a)+I(b)\), since \(I\) is \({\mathcal {E}}\)-cominimum additive. By \(I^*(a^*) = I(a)\) for all \(a \in \varPhi _{\sigma (\mathcal {P}, {\mathcal {E}})}\), it holds that \(I^*(a^*+b^*)=I^*(a^*)+I^*(b^*)\) since \((a+b)^*=a^*+b^*\). Thus, it holds that \(I^*\) is \({\mathcal {E}}^*\)-cominimum additive. Note that if \(\mathcal {F}_1\cup {\mathcal {E}}\) is complete, then \(\mathcal {F}_1^*\cup {\mathcal {E}}^*\) is clearly complete. Since \(\varOmega _{\mathcal {P}, {\mathcal {E}}}^*\) is a finite set, we can apply Theorem 4. Thus, there exist coefficients \(\{\beta _{\{\omega \}}^{\mathcal {P}, {\mathcal {E}}}\}_{\omega \in \varOmega ^*_{\mathcal {P}, {\mathcal {E}}}}, \{\beta _{E^*_i}^{\mathcal {P}, {\mathcal {E}}}\}_{1 \le i \le n}\) such that

$$\begin{aligned} v^*_{\mathcal {P}, {\mathcal {E}}} =\sum _{\omega \in \varOmega ^*_{\mathcal {P}, {\mathcal {E}}} } \beta _{\{\omega \}}^{\mathcal {P}, {\mathcal {E}}}u_{\{\omega \}} + \sum _{1 \le i \le n} \beta _{E^*_i}^{\mathcal {P}, {\mathcal {E}}}u_{E^*_i}. \end{aligned}$$
(6)

Note that for all \(\omega \in \varOmega ^*_{\mathcal {P}, {\mathcal {E}}},\,\beta _{\{\omega \}}^{\mathcal {P}, {\mathcal {E}}}=v^*_{\mathcal {P}, {\mathcal {E}}} (\{\omega \}) \ge 0\) since \(v^*_{\mathcal {P}, {\mathcal {E}}} \) is a capacity. Take any \(a \in \varPhi _{\sigma (\mathcal {P},{\mathcal {E}})}\). Then, for \(a^* \in \varPhi ^* _{\varOmega ^* _{\mathcal {P},{\mathcal {E}}}}\), by Lemma 5, it holds that

$$\begin{aligned} I^*(a^*) = \int \limits _{\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}}a^* \mathrm{{d}}v^*_{\mathcal {P}, {\mathcal {E}}} =\sum _{\omega \in \varOmega ^*_{\mathcal {P}, {\mathcal {E}}}} \beta _{\{\omega \}}^{\mathcal {P}, {\mathcal {E}}}a^*(\omega ) + \sum _{1 \le i \le n} \beta _{E^*_i}^{\mathcal {P}, {\mathcal {E}}} \min _{\omega \in E^*_i}a^*(\omega ). \end{aligned}$$
(7)

Note that \(\min _{\omega \in E^*_i}a^*(\omega )=\min _{\omega \in E_i}a(\omega )\) for all \(a \in \varPhi _{\sigma (\mathcal {P}, {\mathcal {E}})}\). Thus, we can use notation \(\{\beta _{E_i}^{\mathcal {P}, {\mathcal {E}}}\}_{1 \le i \le n}\) instead of \(\{\beta _{E^*_i}^{\mathcal {P}, {\mathcal {E}}}\}_{1 \le i \le n}\). Moreover, it holds that \(a^*(\omega )=a( \omega )\) for all \(\omega \in \varOmega ^*_{\mathcal {P}, {\mathcal {E}}}\). Thus, by \(I^*(a^*)=I(a)\), (6) and (7) can be rewritten as follows:

$$\begin{aligned} v^*_{\mathcal {P}, {\mathcal {E}}}&= \sum _{\omega \in \varOmega ^*_{\mathcal {P}, {\mathcal {E}}}} \beta _{\{\omega \}}^{\mathcal {P}, {\mathcal {E}}}u_{\{\omega \}} + \sum _{1 \le i \le n} \beta _{E_i}^{\mathcal {P}, {\mathcal {E}}}u_{E^*_i}; \end{aligned}$$
(8)
$$\begin{aligned} I(a)&= \int \limits _{\varOmega } a \mathrm{{d}}v =\sum _{\omega \in \varOmega ^*_{\mathcal {P}, {\mathcal {E}}}} \beta _{\{\omega \}}^{\mathcal {P}, {\mathcal {E}}}a(\omega ) + \sum _{1 \le i \le n} \beta _{E_i}^{\mathcal {P}, {\mathcal {E}}} \min _{\omega \in E_i}a(\omega ). \end{aligned}$$
(9)

Now, define a finitely additive measure \(\mu _{\mathcal {P}, {\mathcal {E}}}\) on \(\sigma (\mathcal {P}, {\mathcal {E}})\) as follows: \(\mu _{\mathcal {P}, {\mathcal {E}}}(E^i_j)= \beta _{\{e^i_j\}}^{\mathcal {P}, {\mathcal {E}}}\) for every \(E^i_j \in \varOmega _{\mathcal {P}, {\mathcal {E}}}\) for \(i=1,\ldots ,n\) and \(j=1,\ldots ,m_i\); and \(\mu _{\mathcal {P}, {\mathcal {E}}}(Q_j)= \beta _{\{q_j\}}^{\mathcal {P}, {\mathcal {E}}}\) for every \(Q_j \in \varOmega _{\mathcal {P}, {\mathcal {E}}}\) for \(j=1,\ldots ,m\). Then, (9) can be rewritten as follows:

$$\begin{aligned} I(a)=\int \limits _{\varOmega } a(\omega ) \mathrm{{d}} \mu _{\mathcal {P}, {\mathcal {E}}}(\omega ) +\sum _{1 \le i \le n} \beta _{E_i}^{\mathcal {P}, {\mathcal {E}}} \min _{\omega \in E_i}a(\omega ). \end{aligned}$$
(10)

Next, we shall show that finitely additive measure \(\mu _{\mathcal {P}, {\mathcal {E}}}\) and coefficients \(\{\beta _{E_i}^{\mathcal {P}, {\mathcal {E}}}\}_{1 \le i \le n}\) in expression (10) do not depend on the choice of partition \( \mathcal {P} \in \varPi _{{\mathcal {E}}}\). In the proof, the uniqueness of the Möbius inversion plays a crucial role. Let us take another partition \(\mathcal {P}^{\prime } \in \varPi _{{\mathcal {E}}}\) such that \(\sigma (\mathcal {P}, {\mathcal {E}}) \subseteq \sigma (\mathcal {P}^{\prime }, {\mathcal {E}})\), and repeat the above procedure. Let us define another finite set \( \varOmega ^*_{\mathcal {P}^{\prime }, {\mathcal {E}}}\). We can choose the elements in \( \varOmega ^*_{\mathcal {P}^{\prime }, {\mathcal {E}}}\) such that \( \varOmega ^*_{\mathcal {P}, {\mathcal {E}}} \subseteq \varOmega ^*_{\mathcal {P}^{\prime }, {\mathcal {E}}}\). For such a set \(\varOmega ^*_{\mathcal {P}^{\prime }, {\mathcal {E}}}\), let us denote \({E^{\prime }}^*_i=\{\omega \in \varOmega ^*_{\mathcal {P}^{\prime }, {\mathcal {E}}}| \omega \in E_i\}\), which is the set of representation elements in \(E_i\). Then, it holds that \(E^*_i \subseteq {E^{\prime }}^*_i\) for all \(i=1,\ldots ,n\). By defining capacity \(v^{*}_{\mathcal {P}^{\prime }, {\mathcal {E}}}\) on finite power set \(2^{\varOmega ^*_{\mathcal {P}^{\prime }, {\mathcal {E}}}}\), we can show that there exist coefficients \(\{\beta _{\{\omega \}}^{\mathcal {P}^{\prime }, {\mathcal {E}}}\}_{\omega \in \varOmega ^*_{\mathcal {P}^{\prime }, {\mathcal {E}}}}, \{\beta _{E_i}^{\mathcal {P}^{\prime }, {\mathcal {E}}}\}_{1 \le i \le n}\) such that

$$\begin{aligned} v^*_{\mathcal {P}^{\prime }, {\mathcal {E}}} =\sum _{\omega \in \varOmega ^*_{\mathcal {P}^{\prime }, {\mathcal {E}}}} \beta _{\{\omega \}}^{\mathcal {P}^{\prime }, {\mathcal {E}}}u_{\{\omega \}} + \sum _{1 \le i \le n} \beta _{E_i}^{\mathcal {P}^{\prime }, {\mathcal {E}}}u_{{E^{\prime }}^*_i}, \end{aligned}$$
(11)

and that there exists a finitely additive measure \(\mu _{\mathcal {P}^{\prime }, {\mathcal {E}}}\) on \(\sigma (\mathcal {P}^{\prime }, {\mathcal {E}})\) such that for all \(a \in \varPhi _{\sigma (\mathcal {P}^{\prime }, {\mathcal {E}}) }\),

$$\begin{aligned} I(a)=\int \limits _{\varOmega } a(\omega ) \mathrm{{d}} \mu _{\mathcal {P}^{\prime }, {\mathcal {E}}}(\omega ) +\sum _{1 \le i \le n} \beta _{E_i}^{\mathcal {P}^{\prime }, {\mathcal {E}}} \min _{\omega \in E_i}a(\omega ). \end{aligned}$$
(12)

To complete our proof, we have to show that \(\beta _{E_i}^{\mathcal {P}^{\prime }, {\mathcal {E}}}= \beta _{E_i}^{\mathcal {P}, {\mathcal {E}}}\) for all \(i=1,\ldots ,n\) and that \(\mu _{\mathcal {P}^{\prime }, {\mathcal {E}}}=\mu _{\mathcal {P}, {\mathcal {E}}}\) on \(\sigma (\mathcal {P}, {\mathcal {E}})\). To do so, we need to define another capacity \(V^*\) on \(2^{\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}}\) as follows. First, for every element \(\omega \in \varOmega ^*_{\mathcal {P}, {\mathcal {E}}}\), define \( \Gamma (\omega )=\{ X \in \varOmega _{\mathcal {P}^{\prime }, {\mathcal {E}}}| X \subseteq Y\) such that \(\omega \in Y \in \varOmega _{\mathcal {P}, {\mathcal {E}}} \}\). In other words, \( \Gamma (\omega )\) is the partition of \(Y\) with respect to algebra \(\sigma (\mathcal {P}^{\prime }, {\mathcal {E}})\) where \(Y\) is the cell in partition \(\varOmega _{\mathcal {P}, {\mathcal {E}}}\) such that \(\omega \in Y\). Second, for every element \(\omega \in \varOmega ^*_{\mathcal {P}, {\mathcal {E}}}\), define \(\gamma _{\{\omega \}}=\sum _{X \in \Gamma (\omega )} \mu _{\mathcal {P}^{\prime }, {\mathcal {E}}}(X)\). Third, define a capacity \(V^*\) on \(2^{\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}}\) by

$$\begin{aligned} V^* =\sum _{\omega \in \varOmega ^*_{\mathcal {P}, {\mathcal {E}}}} \gamma _{\{\omega \}}u_{\{\omega \}} + \sum _{1 \le i \le n} \beta _{E_i}^{\mathcal {P}^{\prime }, {\mathcal {E}}}u_{E^*_i}. \end{aligned}$$
(13)

Note that coefficient \(\beta _{E_i}^{\mathcal {P}^{\prime }, {\mathcal {E}}}\) has a prime symbol on \(\mathcal {P}\) and that unanimity game \(u_{E^*_i}\) has no prime symbol on \(E\). Let us show that \(V^*\) in (13) coincides with \(v^*_{\mathcal {P}, {\mathcal {E}}} \) in (8). Indeed, pick any \(T \in 2^{\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}}\) and define \(\tilde{T} \in \sigma (\mathcal {P}, {\mathcal {E}})\) by \(\tilde{T}=\bigcup _{T \cap X \ne \emptyset , X \in \varOmega _{\mathcal {P}, {\mathcal {E}}} }X \). This set \(\tilde{T}\) is the minimal set in \(\sigma (\mathcal {P}, {\mathcal {E}})\) that contains all the elements of \(T\). Then,

$$\begin{aligned} V^* (T)&= \sum _{\omega \in T} \gamma _{\{\omega \}} + \sum _{E^*_i \subseteq T} \beta _{E_i}^{\mathcal {P}^{\prime }, {\mathcal {E}} } = \sum _{\omega \in T} \sum _{X \in \Gamma (\omega )} \mu _{\mathcal {P}^{\prime }, {\mathcal {E}}}(X) + \sum _{E_i \subseteq \tilde{T}} \beta _{E_i}^{\mathcal {P}^{\prime }, {\mathcal {E}} } \\&= \sum _{X \subseteq \tilde{T}, X \in \varOmega _{\mathcal {P}^{\prime }, {\mathcal {E}}}} \mu _{\mathcal {P}^{\prime }, {\mathcal {E}}}(X) +\sum _{E_i \subseteq \tilde{T}} \beta _{E_i}^{\mathcal {P}^{\prime }, {\mathcal {E}} } = \mu _{\mathcal {P}^{\prime }, {\mathcal {E}}}(\tilde{T})+\sum _{E_i \subseteq \tilde{T}} \beta _{E_i}^{\mathcal {P}^{\prime }, {\mathcal {E}} } \\&= I(1_{\tilde{T}})=I^*(1^*_{T})=v^*_{\mathcal {P}, {\mathcal {E}}} (T). \end{aligned}$$

Hence, \(V^*\) coincides with \(v^* _{\mathcal {P}, {\mathcal {E}}}\) for all \(T \in 2^{\varOmega ^* _{\mathcal {P}, {\mathcal {E}}}}\). Therefore, by the uniqueness of the Möbius inversion, it must hold that \(\beta _{E_i}^{\mathcal {P}^{\prime }, {\mathcal {E}}}= \beta _{E_i}^{\mathcal {P}, {\mathcal {E}}}\) for all \(i=1,\ldots ,n\) and that \(\mu _{\mathcal {P}^{\prime }, {\mathcal {E}}}=\mu _{\mathcal {P}, {\mathcal {E}}}\) on \(\sigma (\mathcal {P}, {\mathcal {E}})\). Then, when defining \(\beta _{E_i}^{\mathcal {P}, {\mathcal {E}}}=\varepsilon _i\) and \(\mu _{\mathcal {P}, {\mathcal {E}}}=\mu \), we obtain our expression (1). \(\square \)

1.2.3 Proof of (only if part) of Theorem 3

Proof

Since A1, A3, A4, A5, and A6 hold, by Theorem 2, there exist a unique finitely additive measure \(\mu \) on \((\varOmega , \varSigma )\), an affine function \(u\), and a set of coefficients \(\varepsilon _1,\varepsilon _2,\dots ,\varepsilon _n\), such that \( f \succeq g \Leftrightarrow J(f) \ge J(g) \) where \(J(f)= \int _{\varOmega } u(f(\omega ))\mathrm{{d}}\mu (\omega )+ \sum _{i=1}^n \varepsilon _i \min _{\omega \in E_i} u(f(\omega )) \). Therefore, it suffices to show that all coefficients \(\varepsilon _1,\ldots , \varepsilon _n\) are non-negative. Let \(U\) be the function from \(L_0\) to \(B_0(K)\) and \(I\) be the operator on \(B_0(K)\), both of which are defined in Property (3) of the proof of Theorem 2. Then, for every \(a = U(f),\,I(a)\) is Choquet integral \(\int a \mathrm{{d}}v\) with respect to capacity \(v(T)=I(1_T)\). Moreover, by A7, it holds that \(v(X \cup Y)+v(X \cap Y) \ge v(X)+v(Y)\) for all \(X, Y \in 2^{\varOmega }\).

Now, pick any \(E_i \in {\mathcal {E}}\). By the assumption of \({\mathcal {E}}\) being simple-complete, we can find a two-element set \(\{p,q\}\subseteq E_i\) such that there is no \(E_j \in {\mathcal {E}}\) satisfying \(\{p,q\} \subseteq E_j \subsetneq E_i\). Moreover, take a partition \(\mathcal {P} \in \varPi _{{\mathcal {E}}}\) in the proof of Lemma 2 such that \(p, q \in \varOmega ^*_{\mathcal {P}, {\mathcal {E}}}\). Recall that for every \(X \in 2^{\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}},\,v^*_{\mathcal {P}, {\mathcal {E}}}(X)=v(\bigcup _{e^i_j \in X} E^i_j \cup \bigcup _{q_i \in X}Q_i )\). Thus, \(v(X \cup Y)+v(X \cap Y) \ge v(X)+v(Y)\) for all \(X, Y \in 2^{\varOmega }\) implies that \(v^*_{\mathcal {P}, {\mathcal {E}}}(X \cup Y)+v^*_{\mathcal {P}, {\mathcal {E}}}(X \cap Y) \ge v^*_{\mathcal {P}, {\mathcal {E}}}(X)+v^*_{\mathcal {P}, {\mathcal {E}}}(Y)\) for all \(X,Y \in 2^{\varOmega ^*_{\mathcal {P}, {\mathcal {E}}}}\).

Here, it holds that there is no \(E^*_j \in {\mathcal {E}}^*\) satisfying \(\{p,q\} \subseteq E^*_j \subsetneq E^*_i\). Let \(T_1=E^*_i \backslash \{p\}\) and \(T_2=E^*_i \backslash \{q\}\). Thus, \(T_1 \cup T_2=E_i^*\). Note that for every \(S \subseteq T_1 \cup T_2,\,S \not \subseteq T_1\) and \(S \not \subseteq T_2\) are equivalent to \(\{p, q\} \subseteq S\). It follows that

$$\begin{aligned} 0&\le v^*_{\mathcal {P}, {\mathcal {E}}}(T_1 \cup T_2)-v^*_{\mathcal {P}, {\mathcal {E}}}(T_1) -v^*_{\mathcal {P}, {\mathcal {E}}}(T_2)+v^*_{\mathcal {P}, {\mathcal {E}}}(T_1 \cap T_2) \\&= \sum _{E_j^* \subseteq T_1 \cup T_2, E_j^* \not \subseteq T_1, E_j^* \not \subseteq T_2} \varepsilon _j =\sum _{\{p,\,q\} \subseteq E_j^* \subseteq E_i^*} \varepsilon _j = \varepsilon _i, \end{aligned}$$

where the inequality holds by the convexity of \(v^*_{\mathcal {P}, {\mathcal {E}}}\) and the first equality holds by Lemma 6. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asano, T., Kojima, H. An axiomatization of Choquet expected utility with cominimum independence. Theory Decis 78, 117–139 (2015). https://doi.org/10.1007/s11238-013-9411-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-013-9411-2

Keywords

Navigation