Skip to main content
Log in

The aspect of information production in the process of observation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The physical process of observation is considered from a specific information theoretical viewpoint. Using the modified concept of an information based on infinite alternatives, a formalism is derived describing the elementary transfer of one bit of information. This bit of information is produced on a virtual (nonreal) sub-quantum level of physical description. The interpretation of the formalism yields the following, complementary points: (i) the effect of spatiotemporal delocalization on the sub-quantum level, and (ii) a possible access to the concept of chaos as an intrinsic property of quantum systems. As a brief example, elementary information transfer is illustrated in a cosmological context. Finally, a formal approach to information production on the sub-quantum level is sketched on the basis of complex time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. W. Kantor,Information Mechanics (Wiley, New York, 1977).

    Google Scholar 

  2. C. E. Shannon and C. Weaver,The Mathematical Theory of Communication (University of Illinois Press, Urbana, 1962).

    Google Scholar 

  3. L. Brillouin,Science and Information Theory (Academic, New York, 1967).

    Google Scholar 

  4. A. Kaufmann,Introduction to the Theory of Fuzzy Subsets, Vol. 1 (Academic, New York, 1975).

    Google Scholar 

  5. J. F. Cyranski,Found. Phys. 9, 641 (1979).

    Google Scholar 

  6. J. F. Cyranski,J. Math. Phys. 22, 1467 (1981).

    Google Scholar 

  7. S. T. Ali and E. Prugovečki,J. Math. Phys. 18, 219 (1977), and references therein.

    Google Scholar 

  8. V. Majernik,Acta Phys. Aust. 25, 243 (1967).

    Google Scholar 

  9. C. F. von Weizsäcker,Aufbau der Physik (Hanser, München, 1985).

    Google Scholar 

  10. R. Shaw,Z. Naturforsch. 36a, 80 (1981).

    Google Scholar 

  11. J. D. Farmer,Z. Naturforsch. 37a, 1304 (1982).

    Google Scholar 

  12. J.-P. Eckmann and D. Ruelle,Rev. Mod. Phys. 57, 617 (1985).

    Google Scholar 

  13. I. Procaccia,Phys. Scr. T9, 40 (1985).

    Google Scholar 

  14. H. Atmanspacher and H. Scheingraber,Found. Phys. 17, 939 (1987), and further references therein.

    Google Scholar 

  15. S. Goldstein,Israel J. Math. 38, 241 (1981).

    Google Scholar 

  16. P. C. W. Davies,The Physics of Time Asymmetry (Surrey University Press, Guildford, 1974).

    Google Scholar 

  17. J. S. Bell,Rev. Mod. Phys. 38, 447 (1966).

    Google Scholar 

  18. H. P. Stapp,Phys. Rev. D3, 1303 (1971).

    Google Scholar 

  19. E. T. Jaynes,Phys. Rev. 106, 620 (1957).

    Google Scholar 

  20. I. Prigogine,From Being to Becoming, 2nd edn. (Freeman, San Francisco, 1980).

    Google Scholar 

  21. B. Misra, I. Prigogine, and M. Courbage,Physica 98A, 1 (1979).

    Google Scholar 

  22. Y. Elskens and I. Prigogine,Proc. Natl. Acad. Sci. USA 83, 5756 (1986).

    Google Scholar 

  23. G. Mayer-Kress, ed.,Dimensions and Entropies in Chaotic Systems (Springer, Berlin, 1986).

    Google Scholar 

  24. K. Tomita,Found. Phys. 17, 699 (1987).

    Google Scholar 

  25. B. Ya Zel'dovich and D. D. Sokolov,Sov. Phys. Usp. 28, 608 (1985) (Usp. Fiz. Nauk. 146, 493 (1985)).

    Google Scholar 

  26. E. Nelson,Phys. Rev. 150, 1079 (1966).

    Google Scholar 

  27. P. A. M. Dirac,Nature 168, 906 (1951),Nature 169, 702 (1952).

    Google Scholar 

  28. M. Toda and S. Adachi, inDynamical Systems and Singular Phenomena (World Scientific, Singapore, 1987), p. 1.

    Google Scholar 

  29. M. Toda and K. Ikeda,J. Phys. A20, 3833 (1987).

    Google Scholar 

  30. M. Toda and K. Ikeda,Phys. Lett. 124A, 165 (1987).

    Google Scholar 

  31. M. Jammer,The Philosophy of Quantum Mechanics (Wiley, New York, 1974).

    Google Scholar 

  32. I. Prigogine and T. Y. Petrofsky,Physica 147A, 33 (1987);147A, 461 (1988).

    Google Scholar 

  33. J. A. Wheeler, inFoundational Problems in the Special Sciences, R. E. Butts and J. Hintikka, eds. (Reidel, Dordrecht, 1977), p. 3; inThe Nature of Scientific Discovery, O. Gingerich, ed. (Smithsonian Press, Washington, 1975), pp. 261–296 and pp. 575–587. See also J. D. Barrow and F. J. Tipler,The Anthropic Cosmological Principle (Clarendon Press, Oxford, 1986).

    Google Scholar 

  34. P. H. Damgaard and H. Hüffel,Phys. Rep. 152, 385 (1987).

    Google Scholar 

  35. W. Mückenheim,Phys. Rep. 133, 337 (1986).

    Google Scholar 

  36. L. P. Hughston,Twistor Newsletter 18, 33 (1984).

    Google Scholar 

  37. G. M. Zaslavsky,Phys. Rep. 80, 157 (1981).

    Google Scholar 

  38. M. V. Berry,Proc. R. Soc. Lond. A413, 183 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atmanspacher, H. The aspect of information production in the process of observation. Found Phys 19, 553–577 (1989). https://doi.org/10.1007/BF00734660

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00734660

Keywords

Navigation