Skip to main content
Log in

Atoms in molecules as non-overlapping, bounded, space-filling open quantum systems

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

“[I]t is in virtue of the form that the matter is some one definite thing, and this is the substance of the thing. What Aristotle means seems to be plain common sense: a “thing” must be bounded, and the boundary constitutes its form.” ….“We should not naturally say that it is the form that confers substantiality, but that is because the atomic hypothesis is ingrained in our imagination. Each atom, however, if it is a “thing”, is so in virtue of its being delimited from other atoms, and so having, in some sense, a “form”.” (Emphasis as in the original text).

Bertrand Russell (Russell 1945).

Abstract

The quantum theory of atoms in molecules (QTAIM) uses physics to define an atom and its contribution to observable properties in a given system. It does so using the electron density and its flow in a magnetic field, the current density. These are the two fields that Schrödinger said should be used to explain and understand the properties of matter. It is the purpose of this paper to show how QTAIM bridges the conceptual gulf that separates the observations of chemistry from the realm of physics and do so in a manner that is both rigorous and conceptually simple. Since QTAIM employs real measurable fields, it enables one to present the findings of complex quantum mechanical calculations in a pictorial manner that isolates the essential physics. The time has arrived for a sea change in our attempts to predict and classify the observations of chemistry, time to replace the use of simplified and arbitrary models with the full predictive power of physics, as applied to an atom in a molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • List of publications of Richard F.W. Bader. J. Phys. Chem. A 115, 12438–12444 (2011a)

    Google Scholar 

  • Richard F.W. Bader Festschrift. J. Phys. Chem. A 115(45), 12427–13209 (2011b)

  • Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1990)

    Google Scholar 

  • Bader, R.F.W.: Principle of stationary action and the definition of a proper open system. Phys. Rev. B 49, 13348–13356 (1994)

    Article  Google Scholar 

  • Bader, R.F.W.: 1997 Polanyi Award Lecture: Why are there atoms in chemistry? Can. J. Chem. 76, 973–988 (1998a)

    Google Scholar 

  • Bader, R.F.W.: A bond path: a universal indicator of bonded interactions. J. Phys. Chem. A 102, 7314–7323 (1998b)

    Article  Google Scholar 

  • Bader, R.F.W.: The atomic force microscope as an open system and the Ehrenfest force. Phys. Rev. B 61, 7795–7802 (2000)

    Article  Google Scholar 

  • Bader, R.F.W.: Dielectric polarization: a problem in the physics of an open system. Mol. Phys. 100, 3333–3344 (2002)

    Article  Google Scholar 

  • Bader, R.F.W.: Letter to the editor: quantum mechanics, or orbitals? Int. J. Quantum Chem. 94, 173–177 (2003)

    Article  Google Scholar 

  • Bader, R.F.W.: Everyman’s derivation of the theory of atoms in molecules. J. Phys. Chem. A 111, 7966–7972 (2007)

    Article  Google Scholar 

  • Bader, R.F.W.: Bond paths are not chemical bonds. J. Phys. Chem. A 113, 10391–10396 (2009)

    Article  Google Scholar 

  • Bader, R.F.W.: Autobiography of Richard F. W. Bader. J. Phys. Chem. A 115, 12432–12435 (2011a)

    Article  Google Scholar 

  • Bader, R.F.W.: Worlds apart in chemistry: a personal tribute to J. C. Slater. J. Phys. Chem. A 115, 12667–12676 (2011b)

    Article  Google Scholar 

  • Bader, R.F.W., Austen, M.A.: Properties of atoms in molecules: atoms under pressure. J. Chem. Phys. 107, 4271–4285 (1997)

    Article  Google Scholar 

  • Bader, R.F.W., Bayles, D.: Properties of atoms in molecules: group additivity. J. Phys. Chem. A 104, 5579–5589 (2000)

    Article  Google Scholar 

  • Bader, R.F.W., Bayles, D., Heard, G.L.: Properties of atoms in molecules: transition probabilities. J. Chem. Phys. 112, 10095–10105 (2000)

    Article  Google Scholar 

  • Bader, R.F.W., Becker, P.: Transferability of atomic properties and the theorem of Hohenberg and Kohn. Chem. Phys. Lett. 148, 452–458 (1988)

    Article  Google Scholar 

  • Bader, R.F.W., Beddall, P.M.: Virial field relationship for molecular charge distributions and the spatial partitioning of molecular properties. J. Chem. Phys. 56, 3320–3328 (1972)

    Article  Google Scholar 

  • Bader, R.F.W., Carroll, M.T., Cheeseman, J.R., Chang, C.: Properties of atoms in molecules: atomic volumes. J. Am. Chem. Soc. 109, 7968–7979 (1987a)

    Article  Google Scholar 

  • Bader, R.F.W., Cortés-Guzmán, F.: The virial field and transferability in DNA base-pairing (Chapter 10)”. In: Matta, C.F. (ed.) Quantum Biochemistry: Electronic Structure and Biological Activity (Volume 1), pp. 337–364. Wiley, Weinheim (2010)

    Google Scholar 

  • Bader, R.F.W., Gillespie, R.J., MacDougall, P.J.: A physical basis for the VSEPR model of molecular geometry. J. Am. Chem. Soc. 110, 7329–7336 (1988)

    Article  Google Scholar 

  • Bader, R.F.W., Gough, K.M., Laidig, K.E., Keith, T.A.: Properties of atoms in molecules: Additivity and transferability of group polarizabilities. Mol. Phys. 75, 1167–1189 (1992)

    Google Scholar 

  • Bader, R.F.W., Keith, T.A.: Properties of atoms in molecules: magnetic susceptibilities. J. Chem. Phys. 99, 3683–3693 (1993)

    Article  Google Scholar 

  • Bader, R.F.W., Larouche, A., Gatti, C., Carroll, M.T., MacDougall, P.J., Wiberg, K.B.: Properties of atoms in molecules: dipole moments and transferability of properties. J. Chem. Phys. 87, 1142–1152 (1987b)

    Article  Google Scholar 

  • Bader, R.F.W., Martín, F.J.: Interdeterminancy of basin and surface properties of an open system. Can. J. Chem. 76, 284–291 (1998)

    Article  Google Scholar 

  • Bader, R.F.W., Matta, C.F.: Properties of atoms in crystals: dielectric polarization. Int. J. Quantum Chem. 85, 592–607 (2001)

    Article  Google Scholar 

  • Bader, R.F.W., Matta, C.F.: Atomic charges are measurable quantum expectation values: a rebuttal of criticisms of QTAIM charges. J. Phys. Chem. A 108, 8385–8394 (2004)

    Article  Google Scholar 

  • Bader, R.F.W., Popelier, P.L.A., Keith, T.A.: Theoretical definition of a functional group and the molecular orbital paradigm. Angew. Chem. Int. Ed. Engl. 33, 620–631 (1994)

    Article  Google Scholar 

  • Bader, R.F.W., Stephens, M.E.: Spatial localization of the electronic pair and number distributions in molecules. J. Am. Chem. Soc. 97, 7391–7399 (1975)

    Article  Google Scholar 

  • Bader, R.F.W., Streitwieser, A., Neuhaus, A., Laidig, K.E., Speers, P.: Electron delocalization and the Fermi hole. J. Am. Chem. Soc. 118, 4959–4965 (1996)

    Article  Google Scholar 

  • Benson, S.W., Cruickshank, F.R., Golden, D.M., Haugen, G.R., O’Neal, H.E., Rodgers, A.S., Shaw, R., Walsh, R.: Additivity rules for the estimation of thermochemical properties. Chem. Rev. 69, 279–324 (1969)

    Article  Google Scholar 

  • Biegler-König, F.W.: Calculation of atomic integration data. J. Comput. Chem. 21, 1040–1048 (2000)

    Article  Google Scholar 

  • Biegler-König, F.W., Bader, R.F.W., Tang, T.-H.: Calculation of the average properties of atoms in molecules. II. J. Comput. Chem. 13, 317–328 (1982)

    Article  Google Scholar 

  • Biegler-König, F.W., Schönbohm, J., Bayles, D.: AIM2000—a program to analyze and visualize atoms in molecules. J. Comput. Chem. 22, 545–559 (2001)

    Article  Google Scholar 

  • Binnig, G., Quate, C.F., Gerber, Ch.: Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  • Cioslowski, J.: A new population analysis based on atomic polar tensors. J. Am. Chem. Soc. 111, 8333–8336 (1989)

    Article  Google Scholar 

  • Cohen, N., Benson, S.W.: The thermochemistry of alkenes and cycloalkanes, chap 6. In: Patai, S., Rappoport, Z. (eds.) The Chemistry of Alkanes and Cycloalkanes, pp. 215–287. Wiley, New York (1992)

    Chapter  Google Scholar 

  • Cohen, N., Benson, S.W.: Estimation of heats of formation of organic compounds by additivity methods. Chem. Rev. 93, 2419–2438 (1993)

    Article  Google Scholar 

  • Coppens, P.: X-ray Charge Densities and Chemical Bonding. Oxford University Press, Inc., New York (1997)

    Google Scholar 

  • Coulson, C.A.: Valence, 2nd edn. Oxford University Press, New York (1961)

    Google Scholar 

  • Ehrenfest, P.: Bemerkung über die angenäherte gültigkeit der klassischen mechanik innerhalb der quantenmechanik. Z. Phys. 45, 455–457 (1927)

    Article  Google Scholar 

  • Feynman, R.P.: The space-time formulation of nonrelativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948)

    Article  Google Scholar 

  • Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. II. Addison-Wesley Publishing Co., Inc, Reading (1964)

    Google Scholar 

  • Fradera, X., Austen, M.A., Bader, R.F.W.: The Lewis model and beyond. J. Phys. Chem. A 103, 304–314 (1999)

    Article  Google Scholar 

  • Gillespie, R.J.: Molecular geometry. Van Nostrand Reinhold, London (1972)

    Google Scholar 

  • Gillespie, R.J., Bytheway, I., DeWitte, R.S., Bader, R.F.W.: Trigonal bipyramidal and related molecules of the main group elements: investigation of apparent exceptions to the VSEPR model through the analysis of the laplacian of the electron density. Inorg. Chem. 33, 2115–2121 (1994)

    Article  Google Scholar 

  • Gillespie, R.J., Bytheway, I., Tang, T.-H., Bader, R.F.W.: Geometry of the fluorides, oxofluorides, hydrides and methylides of vanadium (V), chromium (VI) and molybdenum (VI): understanding the geometry of some non VSEPR molecules in terms of core distortion. Inorg. Chem. 35, 3954–3963 (1996)

    Article  Google Scholar 

  • Gillespie, R.J., Hargittai, I.: The VSEPR Model of Molecular Geometry. Allyn and Bacon, Boston (1991)

    Google Scholar 

  • Haaland, A., Helgaker, T.U., Ruud, K., Shorokhov, D.J.: Should gaseous BF3 and SiF4 be described as ionic compounds? J. Chem. Edu. 77, 1076 (2000)

    Article  Google Scholar 

  • Hansma, P.K., Elings, V.B., Marti, O., Bracker, C.E.: Scanning tunneling microscopy and atomic force microscopy: application to biology and technology. Science 242, 209–216 (1988)

    Article  Google Scholar 

  • Jensen, F.: Introduction to Computational Chemistry. Wiley, New York (1999)

    Google Scholar 

  • Keith, T.A.: AIMALL (Version 11.05.16, Professional) (2011). aim@tkgristmill.com

  • Keith, T.A., Bader, R.F.W.: Calculation of magnetic response properties using a continuous set of gauge transformations. Chem. Phys. Lett. 210, 223–231 (1993a)

    Article  Google Scholar 

  • Keith, T.A., Bader, R.F.W.: Topological analysis of magnetically induced molecular current distributions. J. Chem. Phys. 99, 3669–3682 (1993b)

    Article  Google Scholar 

  • Koritsanszky, T.S., Coppens, P.: Chemical applications of X-ray charge-density analysis. Chem. Rev. 101, 1583–1628 (2001)

    Article  Google Scholar 

  • Kosov, D.S., Popelier, P.L.A.: Atomic partitioning of molecular electrostatic potentials. J. Phys. Chem. A 104, 7339–7345 (2000a)

    Article  Google Scholar 

  • Kosov, D.S., Popelier, P.L.A.: Convergence of the multipole expansion for electrostatic potentials of finite topological atoms. J. Chem. Phys. 113, 3969–3974 (2000b)

    Article  Google Scholar 

  • Laidig, K.E.: The atomic basis of the molecular quadrupole moments of benzene and hexafluorobenzene. Chem. Phys. Lett. 185, 483–489 (1991)

    Article  Google Scholar 

  • Libit, L., Hoffmann, R.: Detailed orbital theory of substituent effects. Charge transfer, polarization, and the methyl group. J. Am. Chem. Soc. 96, 1370–1383 (1974)

    Article  Google Scholar 

  • Luana, V., Costales, A., Pendas, A.M.: Ions in crystals: the topology of the electron density in ionic materials. 2. The cubic alkali halide perovskites. Phys. Rev. B 55, 4285–4297 (1997)

    Article  Google Scholar 

  • Löwdin, P.-O.: Scaling problem, virial theorem, and connected relations in quantum mechanics. J. Mol. Spectr. 3, 46–66 (1959)

    Article  Google Scholar 

  • Magnoli, D.E., Murdoch, J.R.: Obtaining self-consistent wave functions which satisfy the virial theorem. Int. J. Quant. Chem. 22, 1249–1262 (1982)

    Article  Google Scholar 

  • Matta, C.F., Arabi, A.A.: Electron-density descriptors as predictors in quantitative structure activity/property relationships and drug design. Future Med. Chem. 3, 969–994 (2011)

    Article  Google Scholar 

  • Matta, C.F., Bader, R.F.W.: An experimentalist’s reply to “What is an atom in a molecule?”. J. Phys. Chem. A 110, 6365–6371 (2006)

    Article  Google Scholar 

  • Matta, C.F., Boyd, R.J.: The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design. Wiley, Weinheim (2007)

    Book  Google Scholar 

  • Matta, C.F., Gillespie, R.J.: Understanding and interpreting electron density distributions. J. Chem. Educ. 79, 1141–1152 (2002)

    Article  Google Scholar 

  • Matta, C.F., Hernández-Trujillo, J., Bader, R.F.W.: Proton spin-spin coupling and electron delocalisation. J. Phys. Chem. A 106, 7369–7375 (2002)

    Article  Google Scholar 

  • Matta, C.F., Massa, L., Keith, T.: Richard F. W. Bader: a true pioneer. J. Phys. Chem. A 115, 12427–12431 (2011)

    Article  Google Scholar 

  • Pascal, P., Gallais, F., Labarre, J.-F.: Sur la susceptibilité diamagnétique des carbures éthyléniques et acétyléniques. Compte Rend. Acad. Sci. 252, 2644–2649 (1961)

    Google Scholar 

  • Popelier, P.L.A.: MORPHY, a program for an automatic atoms in molecules analysis. Comp. Phys. Comm. 93, 212–240 (1996)

    Article  Google Scholar 

  • Popelier, P.L.A., Joubert, L., Kosov, D.S.: Convergence of the electrostatic interaction based on topological atoms. J. Phys. Chem. A 105, 8254–8261 (2001)

    Article  Google Scholar 

  • Runtz, G.R., Bader, R.F.W., Messer, R.R.: Definition of bond paths and bond directions in terms of the molecular charge distribution. Can. J. Chem. 55, 3040–3045 (1977)

    Article  Google Scholar 

  • Russell, B.: A History of Western Philosophy, p. 165. Simon and Schuster, New York (1945)

    Google Scholar 

  • Schrödinger, E.: Quantisierung als eigenwertproblem. Ann. D. Phys. 81, 109–139 (1926)

    Article  Google Scholar 

  • Schrödinger, E.: Collected Papers on Wave Mechanics together with Four Lectures on Wave Mechanics, Third (Augmented), English edn. American Mathematical Society, Chelsea Publishing, Providence (1982)

    Google Scholar 

  • Schwinger, J.: The theory of quantized fields. I. Phys. Rev. 82, 914–927 (1951)

    Article  Google Scholar 

  • Spackman, M.A.: Charge densities from X-ray diffraction data. R. Soc. Chem. Ann. Rep. Sect. C 94, 177–207 (1998)

    Article  Google Scholar 

  • Stefanov, B.B., Cioslowski, J.: Variability of shapes and properties of atoms in molecules: a case study of the carbonyl oxygen. Can. J. Chem. 74, 1263–1270 (1996)

    Article  Google Scholar 

  • Tsirelson, V.G., Ozerov, R.P.: Electron Density and Bonding in Crystals: Principles, Theory and X-ray Diffraction Experiments in Solid State Physics and Chemistry. Institute of Physics Publishing, New York (1996)

    Google Scholar 

Download references

Acknowledgments

CFM will always remain deeply grateful to his friend, mentor, and former PhD advisor, Professor Richard F. W. Bader—to the memory of whom this last of his paper is dedicated. This work has been financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI), and Mount Saint Vincent University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chérif F. Matta.

Additional information

Professor Richard F. W. Bader (1931–2012), the principal and the original corresponding author of this article, has passed away on 15 January 2012. This paper is now published posthumously and is dedicated to his memory. A tribute to Professor Bader (Matta et al. 2011), his autobiography (Bader 2011a), his list of publications (2011a), the last of his articles to be published during his lifetime that he has written in tribute of the great John C. Slater (Bader 2011b), and 80 invited papers in his honor can be all be found in a recent festschrift dedicated to him (2011b). It gives us some comfort to know that Professor Bader has seen his festschrift in December 2011, and was pleased by it, a month before he died from complications of a lung illness.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bader, R.F.W., Matta, C.F. Atoms in molecules as non-overlapping, bounded, space-filling open quantum systems. Found Chem 15, 253–276 (2013). https://doi.org/10.1007/s10698-012-9153-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-012-9153-1

Keywords

Navigation