Skip to main content
Log in

Categorical Ontology of Levels and Emergent Complexity: An Introduction

  • Original Paper
  • Published:
Axiomathes Aims and scope Submit manuscript

Abstract

An overview of the following three related papers in this issue presents the Emergence of Highly Complex Systems such as living organisms, man, society and the human mind from the viewpoint of the current Ontological Theory of Levels. The ontology of spacetime structures in the Universe is discussed beginning with the quantum level; then, the striking emergence of the higher levels of reality is examined from a categorical—relational and logical viewpoint. The ontological problems and methodology aspects discussed in the first two papers are followed by a rigorous paper based on Category Theory, Algebraic Topology and Logic that provides a conceptual and mathematical basis for a Categorical Ontology Theory of Levels. The essential links and relationships between the following three papers of this issue are pointed out, and further possible developments are being considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albertazzi L (2005) Immanent realism—introduction to Franz Brentano. Springer, Dordrecht

    Google Scholar 

  • Alexander S (1927) Space-time and deity, vols 1, 2. McMillan and Co. Ltd, London

  • Andersen PB, Emmeche C, Finnemann NO, Christiansen PV (2000) Downward causation. Minds, bodies and matter. Aarhus University Press, Aarhus, DK

    Google Scholar 

  • Atmanspacher H, Jahn RG (2003) Problems of reproducibility in complex mind matter systems. J Sci Exploration 17(2):243–270

    Google Scholar 

  • Baars B (1988) A cognitive theory of consciousness. Cambridge University Press

  • Baars B, Franklin S (2003) How conscious experience and working memory interact. Trends Cogn Sci 7:166–172

    Article  Google Scholar 

  • Baars B, Newman J (1994) A neurobiological interpretation of the global workspace theory of consciousness. In: Consciousness in philosophy and cognitive neuroscience. Erlbaum, Hildale NJ

  • Baianu IC (1970) Organismic supercategories: II. On multistable systems. Bull Math Biophys 32:539–561

    Article  Google Scholar 

  • Baianu IC (1971a) Organismic supercategories and qualitative dynamics of systems. Bull Math Biophys 33(3):339–354

    Article  Google Scholar 

  • Baianu IC (1971b) Categories, functors and quantum algebraic computations. In: Suppes P (ed) Proceedings of the fourth International congress logic-mathematics-philosophy of science. Bucharest

  • Baianu IC (1972) Energetic considerations in the interpretation of EEG—categories of neuronal network oscillators. Ann Univ Bucharest 21:61–67

    Google Scholar 

  • Baianu IC (1973) Some algebraic properties of (M,R)-systems. Bull Math Biophys 35:213–217

    Google Scholar 

  • Baianu IC, Marinescu M (1974) A functorial construction of (M,R)-Systems. Revue Roumaine de Mathematiques Pures et Appliquees 19:388–391

    Google Scholar 

  • Baianu IC (1977) A logical model of genetic activities in Łukasiewicz algebras: the non-linear theory. Bull Math Biol 39:249–258

    Google Scholar 

  • Baianu IC (1980a) Natural transformations of organismic structures. Bull Math Biol 42:431–446

    Google Scholar 

  • Baianu IC (1980b) On partial order and disorder in biological systems. Lett Editor Bull Math Biophys 42:601–605

    Google Scholar 

  • Baianu IC (1983) Natural transformation models in molecular biology. In: Denver CO (ed) Proceedings of the SIAM national meeting. Eprint: http://www.cogprints.org/3675/ http://www.cogprints.org/3675/0l/Naturaltransfmolbionu6.pdf

  • Baianu IC (1987a) Computer models and automata theory in biology and medicine. In: Witten M (ed) Mathematical models in medicine, vol 7. Pergamon Press, New York, pp 1513–1577. CERN Preprint No. EXT-2004-072: http://www.doe.cern.ch//archive/electronic/other/ext/ext-2004-072.pdf

  • Baianu IC (1987b) Molecular models of genetic and organismic structures. In: Proceedings of relational biology symposium. Argentina; CERN Preprint No. EXT-2004-067 http://www.doc.cern.ch/archive/electronic/other/ext/ext2004067/MolecularModels-ICB3.doc

  • Baianu IC (2006) Robert Rosen’s work and complex systems biology. Axiomathes 16(1–2):25–34

    Article  Google Scholar 

  • Baianu IC (2007) Translational genomics and human cancer interactomics. Invited Review, submitted in November 2006 to Translational Oncogenomics

  • Baianu IC, Brown R, Glazebrook JF (2006) Quantum algebraic topology and field theories. http://www.ag.uiuc.edu/fs40l/QAT.pdf (manuscript in preparation)

  • Baianu IC, Brown R, Georgescu G, Glazebrook JF (2006) Complex nonlinear biodynamics in categories, higher dimensional algebra and Łukasiewicz–Moisil topos: transformations of neuronal, genetic and neoplastic networks. Axiomathes 16(1–2):65–122

    Article  Google Scholar 

  • Baianu IC, Glazebrook JF, Georgescu G (2004) Categories of quantum automata and N-valued Łukasiewicz algebras in relation to dynamic bionetworks, (M,R)-systems and their higher dimensional algebra, Abstract and Preprint of Report: http://www.ag.uiuc.edu/fs401/QAuto.pdf and http://www.medicalupapers.com/quantum+automata+math+categories+baianu/

  • Baianu IC, Glazebrook JF, Georgescu G, Brown R (2007) Non-abelian algebraic topology representations of quantum space-time in a generalized ‘Topos’ with a quantum N-valued logic classifier

  • Baianu IC, Marinescu M (1968) Organismic supercategories: towards a unitary theory of systems. Bull Math Biophys 30:148–159

    Article  Google Scholar 

  • Baianu IC, Poli R (2008) From simple to super- and ultra- complex systems: towards a non-abelian dynamics paradigm shift. In: Theory and applications of ontology, vol 2.

  • Bennett M, Hacker P (2003) Philosophical foundations of neuroscience. Blackwell Publishing, London

    Google Scholar 

  • Block N (ed) (1981) Readings in philosophy of psychology, vol 2. Harvard University Press, Cambridge, Mass

    Google Scholar 

  • Bourbaki N (1960) Éléments de mathématique. In: Théorie des ensembles. Hermann, Paris

  • Bourbaki N (1961 and 1964) Algèbre commutative. In: Èléments de mathématique, Chapts 1–6. Hermann, Paris

  • Bourbaki N (1991) General topology. In: Elements of mathematics, Chapts 1–6. Springer, Berlin

  • Brown R (1967) Groupoids and Van Kampen’s theorem. Proc London Math Soc 17(3):385–401

    Article  Google Scholar 

  • Brown R (1987) From groups to groupoids: a brief survey. Bull London Math Soc 19:113–134

    Article  Google Scholar 

  • Brown R (1988) Topology: a geometric account of general topology, homotopy types and the fundamental groupoid. Ellis Horwood, Chichester, Prentice Hall, New York

  • Brown R (1996) Homotopy theory, and change of base for groupoids and multiple groupoids. Appl Categ Struct 4:175–193

    Article  Google Scholar 

  • Brown R (2002) Categorical structures for descent and Galois theory. Fields Institute, September 23–28

  • Brown R (2004) Crossed complexes and homotopy groupoids as noncommutative tools for higher dimensional local-to-global problems. In: Proceedings of the fields institute workshop on categorical structures for descent and Galois theory, Hopf algebras and semiabelian categories, vol 43. Fields Institue Communications, September 23–28, 2002, pp 101–130

  • Brown R (2006) Topology and groupoids. BookSurge LLC

  • Brown R, Glazebrook JF, Baianu IC (2007) A conceptual and categorical framework in the ontology of levels. Axiomathes 17 (this issue), doi: 10.1007/s10516-007-9010-3

  • Brown R, Higgins PJ, Sivera R (2008) Non-abelian algebraic topology. http://www.bangor.ac.uk/mas010/nonab-a-t.html; http://www.bangor.ac.uk/mas010/nonab-t/partI010604.pdf (in preparation)

  • Brown R, Janelidze G (1997) Van Kampen theorems for categories of covering morphisms in lextensive categories. J Pure Appl Algebra 119:255–263, ISSN 0022-4049

    Google Scholar 

  • Brown R, Janelidze G (2004) Galois theory and a new homotopy double groupoid of a map of spaces. Appl Categ Struct 12:63–80

    Article  Google Scholar 

  • Brown R, Paton R, Porter T (2004) Categorical language and hierarchical models for cell systems. In: Paton R, Bolouri H, Holcombe M, Parish JH, Tateson R (eds) Computation in cells and tissues—perspectives and tools of thought. Natural computing series, Springer-Verlag, pp 289–303

  • Brown R, Porter T (2003) Category theory and higher dimensional algebra: potential descriptive tools in neuroscience. In: Singh N (ed) Proceedings of the international conference on theoretical neurobiology. National Brain Research Centre, Conference Proceedings 1, pp 80–92

  • Buchsbaum DA (1955) Exact categories and duality. Trans Am Math Soc 80:1–34

    Article  Google Scholar 

  • Bucur I, Deleanu A (1968) Introduction to the theory of categories and functors. John Wiley and Sons, London

    Google Scholar 

  • Bunge M, Lack S (2003) Van Kampen theorems for toposes. Advan Math 179:291–317

    Article  Google Scholar 

  • Butterfield J, Isham CJ (2001) Spacetime and the philosophical challenges of quantum gravity. In: Callender C, Hugget N (eds) Physics meets philosophy at the planck scale. Cambridge University Press, pp 33–89

  • Butterfield J, Isham CJ (1998, 1999, 2000–2002) A topos perspective on the Kochen–Specker theorem I–IV. Int J Theor Phys 37(11):2669–2733; 38(3):827–859; 39(6):1413–1436; 41(4):613–639

    Google Scholar 

  • Carnap R (1938) The logical syntax of language. Harcourt Brace and Co., New York

    Google Scholar 

  • Čech E (1932) Höherdimensionale homotopiegruppen. In: Verhandlungen des Internationalen Mathematiker-Kongresses Zurich, Band 2, p. 203

  • Chalmers DJ (1996) The conscious mind—in search of a fundamental theory. Oxford University Press

  • Changeux J-P (1985) Neuronal man—the biology of mind. Princeton University Press

  • Cohen PM (1965) Universal algebra. Harper and Row, New York

    Google Scholar 

  • Csikzentmihalyi M (1990) The evolving self: a psychology for the third millenium. Harper & Row, New York

    Google Scholar 

  • Damasio A (1994) Descartes’ error: emotion, reason and the human brain. Avon Books, New York

    Google Scholar 

  • Dennett DC (1981) A cure for the common code? In: Block N (ed) Readings in philosophy of psychology, vol 2. Harvard University Press, Cambridge, Mass, pp 21–37

    Google Scholar 

  • Edelman G (1992) Brilliant air, brilliant fire—on the matter of the mind. Basic Books, New York

    Google Scholar 

  • Edelman G (1989) The remembered present. Basic Books, New York

    Google Scholar 

  • Edelman G, Tononi G (2000) A universe of consiousness. Basic Books, New York

    Google Scholar 

  • Ehresmann C (1959) Catégories topologiques et catégories différentiables. Coll Géom Diff Glob (Bruxelles), Centre Belge Rech. Math., Louvain, pp 137–150

  • Ehresmann C (1963) Catégories doubles des quintettes: applications covariantes. CRAS Paris 256:1891–1894

    Google Scholar 

  • Ehresmann C (1965) Catégories et structures. Dunod, Paris

    Google Scholar 

  • Ehresmann C (1966) Trends toward unity in mathematics. Cahiers de Topologie et Geometrie Differentielle 8:1–7

    Google Scholar 

  • Ehresmann C (1984) Oeuvres complètes et commentées: Amiens, 1980–1984. edited and commented by Andrée Ehresmann

  • Ehresmann AC, Vanbremeersch J-P (2006) The memory evolutive systems as a model of Rosen’s organisms. Axiomathes 16(1–2):13–50

    Google Scholar 

  • Eilenberg S, Mac Lane S (1942) Natural Isomorphisms in group theory. Am Math Soc 43:757–831

    Google Scholar 

  • Eilenberg S, Mac Lane S (1945) The general theory of natural equivalences. Trans Am Math Soc 58:231–294

    Article  Google Scholar 

  • Elsasser MW (1981) A form of logic suited for biology. In: Rosen R (ed) Progress in theoretical biology, vol 6. Academic Press, New York, pp 23–62

    Google Scholar 

  • Field HH (1981) Mental representation. In: Block N (ed) Readings in philosophy of psychology, vol 2. Harvard University Press, Cambridge, Mass, pp 64–77

    Google Scholar 

  • Fleischaker G (1988) Autopoiesis: the status of its system logic. Biosystems 22(1):3749

    Article  Google Scholar 

  • Freeman WJ (1997) Nonlinear neurodynamics of intentionality. J Mind Behav 18:143–172

    Google Scholar 

  • Freeman WJ (1999) Consciousnness, intentionality and causality. J Conscious Stud 11:143–172

    Google Scholar 

  • Freyd P (1964) Abelian categories. Harper and Row, New York

    Google Scholar 

  • Gablot R (1971) Sur deux classes de catégories de Grothendieck. Thesis, University de Lille

  • Gabriel P (1962) Des catégories abéliennes. Bull Soc Math France 90:323–448

    Google Scholar 

  • Gabriel P, Popescu N (1964) Caractérisation des catégories abéliennes avec générateurs et limites inductives. CRAS Paris 258:4188–4191

    Google Scholar 

  • Gabriel P, Zisman M (1967) Category of fractions and homotopy theory, Ergebnesse der math. Springer, Berlin

    Google Scholar 

  • Georgescu G (2006) N-valued logics and Łukasiewicz—moisil Algebras. Axiomathes 16(1–2):123–136

    Article  Google Scholar 

  • Georgescu G, Popescu D (1968) On algebraic categories. Revue Roumaine de Mathematiques Pures et Appliquées 13:337–342

    Google Scholar 

  • Gnoli C, Poli R (2004) Levels of reality and levels of representation. Knowl Organ 21(3):151–160

    Google Scholar 

  • Goodwin BC (1982) Development and evolution. J Theor Biol 97:43–55

    Article  Google Scholar 

  • Goodwin BC (1994) How the leopard changed its spots: the evolution of complexity. Touchstone Publication, New York

    Google Scholar 

  • Gray CW (1965) Sheaves with values in a category. Topology 3:1–18

    Article  Google Scholar 

  • Grossberg S (1999) The link between brain learning, attention and consciousness. Conscious Cogn 8:1–44

    Google Scholar 

  • Grothendieck A (1957) Sur quelque point d-algébre homologique. Tohoku Math J 9:119–121

    Google Scholar 

  • Grothendieck A (1971) Revêtements Étales et Groupe Fondamental (SGA1). In: Catégories fibrées et descente. Lecture notes in math. chapt VI, vol 224. Springer-Verlag, Berlin

  • Grothendieck A, Dieudonné J (1960) Eléments de geometrie algébrique. Publ Inst des Hautes Etudes de Science, vol 4, 228pp

  • Harman GH (1981) Language learning. In: Block N (ed) Readings in philosophy of psychology, vol 2. Harvard University Press, Cambridge, Mass, pp 38–44

    Google Scholar 

  • Hartmann N (1935) Zur Grundlegung der Ontologie. W. de Gruyter, Berlin

    Google Scholar 

  • Hartmann N (1952) The new ways of ontology. In: Systematische Philosophie, Chicago, pp 199–311

  • Hawking SW, Ellis GFR (1973) The large scale structure of space–time. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Healy MJ, Caudell TP (2006) Ontologies and worlds in category theory: implications for neural systems. Axiomathes 16(1–2):165–214

    Article  Google Scholar 

  • Healy MJ, Caudell TP (2004) Neural networks, knowledge and cognition: amathematical semantic model based upon category theory. Technical report EECE-TR-04-20, Dept of Electrical and Computer Engineering, University of New Mexico

  • Hofstadter DR (1979) Gödel, Escher, Bach: an eternal Golden Braid. Basic Books, New York

    Google Scholar 

  • James W (1958) In talks to teachers on psychology. Norton, New York

    Google Scholar 

  • James W (1890) The principles of psychology. Henry Hold and Co., New York

    Google Scholar 

  • Kosslyn SM (2007) On the evolution of human motivation: The role of social prosthetic systems. In Platek SM, et al (eds) Evolutionary cognitive neuroscience. MIT Press, Cambridge, MA

    Google Scholar 

  • Lawvere FW (1966) The category of categories as a foundation for mathematics. In: Eilenberg S et al (eds) Proceedings of the Conference in Categorical Algebra-La Jolla. Springer-Verlag, pp 1–20

    Google Scholar 

  • Lawvere FW (1963) Functorial semantics of algebraic theories. Proc Natl Acad Sci USA, Math 50:869–872

    Article  Google Scholar 

  • Levich AP, Solovy’ov AV (1999) Category-functor modelling of natural systems. Cybern Syst 30(6):571–585

    Article  Google Scholar 

  • Löfgren L (1968) An axiomatic explanation of complete self-reproduction. Bull Math Biophys 30:317–348

    Article  Google Scholar 

  • Mac Lane S (1963) Homology. Springer, Berlin

    Google Scholar 

  • Mac Lane S (2000) Categories for the working mathematician. Springer, New York

    Google Scholar 

  • Mac Lane S, Moerdijk I (1992) Sheaves in geometry and logic. A first introduction in topos theory. Springer-Verlag, New York

    Google Scholar 

  • Maturana HR, Varela FJ (1980) Autopoiesis and cognition—the realization of the living. Boston studies in the philosophy of science, vol 42. Reidel Pub Co., Dordrecht

  • May JP (1999) A concise course in algebraic topology. The University of Chicago Press, Chicago

    Google Scholar 

  • Mayr E (1970) Populations, species, and evolution. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Mitchell B (1965) Theory of categories. Academic Press, London

    Google Scholar 

  • Penrose R (1994) Shadows of the mind. Oxford University Press, Oxford

    Google Scholar 

  • Pickering J, Skinner M (1990) From sentience to symbols. University of Toronto Press, Toronto

    Google Scholar 

  • Poli R (1998) Levels. Axiomathes 9(1–2):197–211

    Article  Google Scholar 

  • Poli R (2001a) The basic problem of the theory of levels of reality. Axiomathes 12(3–4):261–283

    Article  Google Scholar 

  • Poli R (2001b) Alwis. Ontology for knowledge engineers. Ph.D. Thesis, Utrecht University

  • Poli R (2006a) Levels of reality and the psychological stratum. In: Revue Internationale de Philosophie, 61:2, pp 163–180

  • Poli R (2006b) Steps towards a synthetic methodology. In: Proceedings of the Conference in continuity and change: perspectives on science and religion. Metanexus Institute, Philadelphia, PA, June 2006, http://www.metanexus.net/conferences/pdf/conference2006/Poli.pdf

  • Poli R (2006c) First steps in experimental phenomenology. In: Loula A, Gudwin R (eds) Artificial cognition systems. Idea Grouping Publishing, Hersey, PA

  • Poli R (2008) Ontology: the categorical stance. In: Poli R (ed) Theory and applications of ontology, vol 1. Springer, Berlin (in press)

  • Popescu N (1967) La théorie générale de la décomposition. Rev Roum Math Pures et Appl 7:1365–1371

    Google Scholar 

  • Popescu N (1973) Abelian categories with applications to rings and modules, 2nd edn. Academic Press, 1975: New York and London (English translation by Baianu IC)

  • Pribram KH (2000) Proposal for a quantum physical basis for selective learning. In: Farre (ed) Proceedings ECHO IV 1–4

  • Rashevsky N (1954) Topology and life: in search of general mathematical principles in biology and sociology. Bull Math Biophys 16:317–348

    Article  Google Scholar 

  • Rashevsky N (1967) Organismic sets and biological epimorphism. Bull Math Biophys 29:389–393

    Article  Google Scholar 

  • Rashevsky N (1968) Neurocybernetics as a particular case of general regulatory mechanisms in biological and social organisms. Concepts de l’Age de la Science 3:243–248

    Google Scholar 

  • Rashevsky N (1969) Outline of a unified approach to physics, biology and sociology. Bull Math Biophys 31:159–198

    Article  Google Scholar 

  • Rosen R (1958a) A relational theory of biological systems. Bull Math Biophys 20:245–260

    Article  Google Scholar 

  • Rosen R (1958b) The representation of biological systems from the standpoint of the theory of categories. Bull Math Biophys 20:317–341

    Article  Google Scholar 

  • Rosen R (1985) Anticipatory systems. Pergamon Press, New York

    Google Scholar 

  • Rosen R (1987) On complex systems. Eur J Operat Res 30:129–134

    Article  Google Scholar 

  • Samuel P, Zariski O (1957 and 1960) Commutative algebra, vols 1, 2. van Nostrand, New York

  • van Kampen EH (1933) On the connection between the fundamental groups of some related spaces. Am J Math 55:261–267

    Google Scholar 

  • Wallace R (2007) Culture and inattentional blindness: a global workspace perspective. J Theor Biol 245:378–390

    Article  Google Scholar 

  • Warner M (1982) Representations of (M,R)-systems by categories of automata. Bull Math Biol 44:661–668

    Google Scholar 

  • Weinberg S (1995–2000) The quantum theory of fields, vols 1–3. Cambridge University Press, Cambridge, UK

  • Wiener N (1950) The human use of human beings: cybernetics and society, 1989 edn. Free Association Books, London, pp 147–148

  • Woit P (2006) Not even wrong: the failure of string theory and the search for unity in physical laws. Jonathan Cape

Download references

Acknowledgement

The author gratefully acknowledges several stimulating discussions with and fruitful suggestions by Editor Roberto Poli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ion C. Baianu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baianu, I.C. Categorical Ontology of Levels and Emergent Complexity: An Introduction. Axiomathes 17, 209–222 (2007). https://doi.org/10.1007/s10516-007-9013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10516-007-9013-0

Keywords

Navigation