Skip to main content
Log in

Concepts of an architectonic approach to transformation morphology

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

This paper is about a general methodology for pattern transformation. Patterns are network representations of the relations among structures and functions within an organism. Transformation refers to any realistic or abstract transformation relevant to biology, e.g. ontogeny, evolution and phenotypic clines. The main aim of the paper is a methodology for analyzing the range of effects on a pattern due to perturbing one or more of its structures and/or functions (transformation morphology). Concepts relevant to such an analysis of pattern transformation are reviewed and several new ones introduced: pattern unit; direct and indirect functional demands; compatibility and trade-off; integrating, adding and decoupling; functional effectiveness; spatial, profile and other architectonic constraints; domains of structure-function relations; goal and process adaptability; multiple pathways. The paper is written from the the perspective of architectonic morphology, viz. functional morphology focusing on the relation between anatomical coherence and the compatibility of functions. The advantages and disadvantages of inductive and deductive approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aerts, P. (1992). Fish biomechanics: purpose or means? Neth. J. Zool. 42: 430–444.

    Google Scholar 

  • Alexander, R. McN. (1985). The ideal and the feasible: physical constraints on evolution. Biol. J. Linn. Soc. 26: 345–358.

    Google Scholar 

  • Anker, G.Ch. (1974). Morphology and kinetics of the head of the stickleback,Gasterosteus aculeatus. Trans. zool. Soc. Lond. 32: 311–416.

    Google Scholar 

  • Anker, G.Ch. (1986). The morphology of joints and ligaments in the head of a generalizedHaplochromis species:H. elegans Trewavas, 1933 (Teleostei, Cichlidae). I. The infraorbital apparatus and the suspensorial apparatus. Neth. J. Zool. 36: 498–530.

    Google Scholar 

  • Arnold, S.J. (1983). Morphology, performance and fitness. Amer. Zool. 23: 347–361.

    Google Scholar 

  • Barel, C.D.N. (1983). Towards a constructional morphology of cichlid fishes. Neth. J. Zool. 33 357–424.

    Google Scholar 

  • Barel, C.D.N. (1984). Form-relations in the context of constructional morphology: the eye and suspensorium of lacustrine Cichlidae (Pisces, Teleostei). With a discussion on the implications of phylogenetic and allometric form interpretations. Neth. J. Zool. 34: 439–502.

    Google Scholar 

  • Barel, C.D.N. (1985). A Matter of Space. Constructional Morphology of Cichlid Fishes. Thesis, Leiden University.

  • Barel, C.D.N., G.Ch. Anker, F. Witte, R.J.C. Hoogerhoud and T. Goldschmidt (1989). Constructional constraints and its ecomorphological implications. Acta Morphol. Neerl.-Scand. 27: 83–109.

    Google Scholar 

  • Barel, C.D.N., J.W. van der Meulen and H. Berkhoudt (1977). Kinematischer Transmissionskoeffizient und Vierstangensystem als Funktionsparameter und Formmodell für mandibulare Depressionsapparate bei Teleosteirn. Anat. Anz. 142:21–31.

    Google Scholar 

  • Baron, C. (1991). What functional morphology cannot explain: A model of sea urchin growth and a discussion on the role of morphogenetic explantations in biology. In: Dudley, E.C. (ed.), The Unity of Evolutionary Biology: 471–488. Portland, Oregon, Discorides Press.

    Google Scholar 

  • Beer, M. de (1989). Ligh measurements in Lake Victoria, Tanzania. Ann. Mus. Roy. Afr. Centr. Sc. Zool. 257: 57–60.

    Google Scholar 

  • Bell, A.D., (1984). Dynamic morphology: a contribution to plant population ecology. In: Dirzo R. and J. Jarukhan (eds.), Perspectives on Plant Population Ecology: 48–65.

  • Bock, W.J. (1959). Preadaptation and multiple evolutionary pathways. Evolution 13: 194–211.

    Google Scholar 

  • Bock, W.J. (1988). The nature of explanation in morphology. Am. Zool. 28: 205–215.

    Google Scholar 

  • Bock, W.J. and G. von Wahlert (1965). Adaptation and the form-function complex. Evolution 19: 269–296.

    Google Scholar 

  • Carlson, S.J. (1989). The articulate brachiopod hinge mechanism: morphological and functional variation. Paleobiol. 15: 364–386.

    Google Scholar 

  • Corsin, J. (1968). Role de la compétition osseuse dans la forme des os du toit cranien des Urodéles. J. Embryol. Exp. Morph. 19: 103–108.

    Google Scholar 

  • Dobzhanski, Th. (1968). On some fundamental concepts of Darwinian biology. Evolution Biol. 2: 1–34.

    Google Scholar 

  • Dullemeijer, P. (1959). A comparative functional-anatomical study of the heads of some Viperidae. Morph. Jahrb. 99: 880–985.

    Google Scholar 

  • Dullemeijer, P. (1971). Comparative ontogeny and cranio-facial growth. In: Moyers and Krogman (eds.), Cranio-facial Growth in Man. Oxford, New York, Pergamon Press.

    Google Scholar 

  • Dullemeijer, P. (1974). Concepts and Approaches in Animal Morphology. Assen, Van Gorcum.

    Google Scholar 

  • Dullemeijer, P. (1985). Diversity of functional morphological explanation. Acta Biother. 34: 111–124.

    Google Scholar 

  • Dullemeijer, P. (1989). On the concept of integration in animal morphology. Fotschritte Zoologie 35: 3–18.

    Google Scholar 

  • Dullemeijer, P. (1991). Evolution of biological constructions, concessions, limitations and pathways. In: Schmidt-Kittler, N. and K. Vogel (eds.), Constructional Morphology and Evolution: 313–329. Berlin, Springer-Verlag.

    Google Scholar 

  • Dullemeijer, P. and C.D.N. Barel (1977). Functional morphology and evolution. In: Hecht, M.K., P.C. Goody and B.M. Hecht (eds.), Major Patterns in Vertebrate Evolution. NATO Advanced Study Institute. Series A, vol. 14: 83–117. New York, London, Plenum Press.

    Google Scholar 

  • Duncker, H.-R. (1991). Constructional and ecological prerequisites for the evolution of homeothermy. In: Schmidt-Kittler N. and K. Vogel (eds.). Constructional Morphology and Evolution: 331–357. Berlin, Springer-Verlag.

    Google Scholar 

  • Elshoud, G.C.A. (1986). Fish and Chips. Computer Models and Functional Morphology of Fishes. Thesis, Leiden University.

  • Emerson, S.B. (1988). Testing for historical patterns of change: a case study with frog pectoral girdles. Paleobiol. 14: 174–86.

    Google Scholar 

  • Emerson, S.B. and S.J. Arnold (1989). Intra- and interspecific relationships between morphology, performance and fitness. In: Wake, D.B. and G. Roth (eds.), Complex Organismal Functions: Integration and Evolution in Vertebrates: 295–314. Report of the Dahlem Workshop on Complex Organismal Functions, Berlin 1988. John Wiley and Sons Ltd.

  • Fisher, D.C. (1985). Evolutionary morphology: beyond the analogous, the anecdotal, and the ad hoc. Paleobiol. 11: 120–138.

    Google Scholar 

  • Fisher, J.B. and H. Honda (1979). Branch geometry and effective leaf area: a study ofTerminalia-branching pattern. I. Theoretical trees. Am. J. Bot. 66:633–644. II. Survey of real trees. Am. J. Bot. 66:645–655.

    Google Scholar 

  • Fryer, G. and T.D. Iles (1972). The Cichlid Fishes of the Great Lakes of Africa. Edinburgh, Oliver and Boyd.

    Google Scholar 

  • Galis, F. (1992). A model for biting in the pharyngeal jaws of a cichlid fish:Haplochromis piceatus. J. theor. Biol. 155: 343–368.

    Google Scholar 

  • Galis, F. (1993). Interactions between the pharyngeal jaw apparatus, feeding behaviour and ontogeny in the cichlid fish,Haplochromis piceatus: A study of morphological constraints in evolutionary ecology. J. Exp. Zool. 267: 137–154.

    Google Scholar 

  • Galis, F. and C.D.N. Barel (1980). Comparative functional morphology of the gills of African lacustrine Cichlidae (Pisces, Teleostei). Neth. J. Zool. 30: 392–430.

    Google Scholar 

  • Galis, F. and P.W. de Jong (1988). Optimal foraging and ontogeny: Food selection byHaplochromis piceatus. Oecologica (Berlin) 75: 175–184.

    Google Scholar 

  • Goldschmidt, T. (1989). Anal spots (egg dummies) in relation to light conditions in haplochromine cichlids (Pisces) from Lake Victoria, Tanzania. Ann. Mus. Roy. Afr. Cent. Sc. Zool. 257: 139–142.

    Google Scholar 

  • Goldschmidt, T. (1991). Egg mimics in haplochromine cichlids (Pisces, Perciformes) from Lake Victoria. Ethology 88: 177–190.

    Google Scholar 

  • Goldschmidt, T. and F. Witte (1990). Reproductive strategies of zooplanktivorous haplochromine cichlids (Pisces) from Lake Victoria before the Nile perch boom. Oikos 58: 356–368.

    Google Scholar 

  • Grant, P.R. (1986). Ecology and Evolution of Darwin's Finches. Princeton University Press.

  • Greenwood, P.H. (1974). The cichlid fishes of Lake Victoria, East Africa: the biology and evolution of a species flock. Bull. Br. Mus. nat. Hist. (Zool). Suppl. 6: 1–134.

    Google Scholar 

  • Greenwood, P.H. (1981). The Haplochromine Fishes of the East African Lakes. München, Kraus International Publications.

    Google Scholar 

  • Hallé, F., R.A.A. Oldemann and P.B. Tomlinson (1978). Tropical Trees and Forests: an Architectural Analysis. Growth Patterns and Form of Trees. Berlin, Springer Verlag.

    Google Scholar 

  • Heidweiller, J., B. Lendering and G.A. Zweers (1992). Development of motor patterns in cervical muscles of drinking chickens. Neth. J. Zool. 42:1–22.

    Google Scholar 

  • Heidweiller, J. and G.A. Zweers (1992). Development of drinking mechanisms in the chicken (Gallus gallus) (Aves). Zoomorphology 111: 217–228.

    Google Scholar 

  • Hempel, C.G. (1966). Philosophy of Natural Science. Prentice Hall, Inc.

  • Hickman, C. (1991). Functional analysis and the power of the fourth dimension in comparative evolutionary studies. In: Dudley E.C. (ed.), The Unity of Evolutionary Biology Vol. I: 548–554. Portland, Oregon, Discorides Press.

    Google Scholar 

  • Hoogerhoud, R.J.C. (1987). The adverse effects of shell ingestion in molluscivorous cichlids (Teleostei): A constructional morphological approach. Neth. J. Zool. 37: 277–300.

    Google Scholar 

  • Keenleyside, M. (ed.) (1992). Cichlid Fishes. Behaviour, Ecology and Evolution. Chapman and Hall.

  • Kingsolver, J.G. and M.A.R. Koehl (1985). Aerodynamics, thermoregulation and the evolution of insect wings: differential scaling and evolutionary change. Evolution 39: 488–504.

    Google Scholar 

  • Klaauw, C.J. van der (1945). Cerebral skull and facial skull. A contribution to the knowledge of skull-structure. Arch. Néerl. Zool. 7: 16–37.

    Google Scholar 

  • Kooloos, J.G.M., A.R. Kraaijeveld, G.E.J. Langenbach, and G.A. Zweers (1989). Comparative mechanics of filter feeding inAnas platyrhynchos, Anas clypeata andAythia fuligula (Aves, Anseriformes). Zoomorphology 108: 269–290.

    Google Scholar 

  • Lauder, G.V. (1981). Form and function: structural analysis in evolutionary morphology. Paleobiol. 7: 430–442.

    Google Scholar 

  • Lauder, G.V. (1983). Functional and morphological bases of trophic specialization in sunfishes (Teleosteï, Centrarchidae). J. Morph. 178: 1–21.

    Google Scholar 

  • Lauder, G.V. (1989, group report). How are feeding systems integrated and how have evolutionary innovations been introduced? In: Wake D.B. and G. Roth (eds.), Complex Organismal Functions: Integration and Evolution in Vertebrates: 97–115. John Wiley and Sons.

  • Lauder, G.V. and S.M. Reilly (in press). Amphibian feeding behavior: comparative biomechanics and evolution. In: Bels, V.I., M. Chardon and P. Vanderwalle (eds.), Biomechanics of Feeding in Vertebrates, Berlin, Springer Verlag.

  • Lauder, G.V. and H.B. Shaffer (1988). Ontogeny of functional design in Tiger salamanders (Ambystoma tigrinum): Are motor patterns conserved during major transformations. J. Morph. 197: 249–268.

    Google Scholar 

  • Leeuwen, J.L. van and M. Muller (1984). Optimum sucking techniques for predatory fish. Trans. zool. Soc. Lond. 37: 137–169.

    Google Scholar 

  • Leeuwen, J. L. van and C.W. Spoor (1992). Modelling mechanically stable muscle architectures. Phil. Trans. R. Soc. Lond. B 336: 275–292.

    Google Scholar 

  • Leisler, B. and H. Winkler (1991). Ergebnisse und Konzepte ökomorphologischer Untersuchungen an Vögeln. J. für Ornithologie 132: 373–425.

    Google Scholar 

  • Liem, K.F. (1980). Adaptive significance of intra- and interspecific differences in the feeding repertoire of cichlid fishes. Am. Zool. 20: 295–314.

    Google Scholar 

  • Liem, K.F. (1990). Key evolutionary innovations, differential diversity, and synecomorphosis. In: Niteck, M.H. (ed.), Evolutionary Innovations: 147–170. Univ. Chicago Press.

  • Losos, J.B. (1990a). Ecomorphology, performance capability, and scaling of West IndianAnolis lizards: An evolutionary analysis. Ecol. Monographs 60: 369–388.

    Google Scholar 

  • Losos, J.B. (1990b). The evolution of form and function: morphology and locomotor performance in West IndianAnolis Lizards. Evolution 44: 1189–1203.

    Google Scholar 

  • Maynard Smith, J. (1978). Optimization theory in evolution. Ann. Review Ecol. and System. 9: 31–56.

    Google Scholar 

  • McKinney, F.K. and D.M. Raup (1982). A turn in the right direction: simulation of erect spiral growth in the bryozoansArchimedes andBugula. Paleobiol. 8: 101–112.

    Google Scholar 

  • Meer, H.J. van der (1991). Ecomorphology of Photoreception in Haplochromine Cichlid Fishes. Thesis, Leiden University.

  • Meer, H.J. van der (1992). Constructional morphology of photoreceptor patterns in percomorph fish. Acta Biotheor. 40: 51–85.

    Google Scholar 

  • Meer, H.J. van der, (1993). Light-induced modulation of retinal development in the cichlid fishHaplochromis sauvagei (Pfeffer, 1896). Zool. J. Linn. Soc. 108: 271–285.

    Google Scholar 

  • Meer, H.J. van der, and G.Ch. Anker (1984). Retinal resolving power and sensitivity of the photopic system in seven haplochromine species (Cichlidae, Teleostei). Neth. J. Zool. 34: 197–209.

    Google Scholar 

  • Meyer, A. (1993). Phylogenetic relationships and evolutionary processes in East African cichlid fishes. Tree 8: 279–284.

    Google Scholar 

  • Motta, P.J. and K.M. Kotrschal (1992). Correlative, experimental and comparative evolutionary approaches in ecomorphology. Neth. J. Zool. 42:400–415.

    Google Scholar 

  • Muller, M. (1987). Optimization principles applied to the mechanism of neurocranium levation and mouth bottom depression in bony fishes (Halecostomi). J. theor. Biol. 126: 343–368.

    Google Scholar 

  • Muller, M. (1989). A quantitative theory of expected volume changes of the mouth during feeding in teleost fishes. J. Zool. Lond. 217: 639–662.

    Google Scholar 

  • Muller, M. (in press). Semicircular duct dimension and sensitivity of the vertebrate vestibular system. J. theor. Biol.

  • Niklas, K.J., and D.R. Kaplan (1991). Biomechanics and the adaptive significance of multicellularity in plants. In: Dudley E.C. (ed.), The Unity of Evolutionary Biology: 488–502, Portland, Oregon, Discorides Press.

    Google Scholar 

  • Niklas, K. and V. Kerchner (1984). Mechanical and photosynthetic constraints on the evolution of plant shape. Paleobiol. 10: 79–101.

    Google Scholar 

  • Otten, E. (1981). Vision during growth of a generalizedHaplochromis species:H.elegans Trewavas (1933 (Pisces, Cichlidae). Neth. J. Zool. 31: 650–700.

    Google Scholar 

  • Otten, E. (1983). The jaw mechanism during growth of a generalizedHaplochromis species:H. elegans Trewavas (1933 (Pisces, Cichlidae). Neth. J. Zool. 33: 55–98.

    Google Scholar 

  • Raup, D.M. (1966). Geometric analysis of shell coiling: General problems. J. Paleontol. 10: 1178–1190.

    Google Scholar 

  • Raup, D.M. (1969). Theoretical morphology of echinoid growth. J. Paleontol. 42: 50–63.

    Google Scholar 

  • Reilly, S.M. and G.V. Lauder (1990). The evolution of tetrapod feeding behavior: Kinematic homologies in prey transport. Evolution 44: 1542–1557.

    Google Scholar 

  • Schmidt-Kittler, N. and K. Vogel (eds.) (1991). Constructional Morphology and Evolution. Berlin, Springer Verlag.

    Google Scholar 

  • Tatarko, K. (1933/4). Restitution des Kiemendeckels des Karpfens. Ein Versuch des studiums der Formbildung durch Analyse der Wechselbeziehungen zwischen Form und Funktion bei der Restitution. Zool. Jahrb. Allg. Zool. Physiol. 53: 461–500.

    Google Scholar 

  • Thomas, R.D.K. (1979). Constructional Morphology. In: Farbridge R.W. and D. Jabonski (eds.), Encyclopedia of Paleontology: 482–487. Strondsberg, Dowden, Hutchinson and Ross.

    Google Scholar 

  • Trewavas, E. (1983). Tilapiine Fishes of the GeneraSarotherodon, Oreochromis andDanaklia. London, British Museum (Natural History).

    Google Scholar 

  • Verraes, W. (1989). A theoretical reflexion on some crucial concepts in functional morphology. Acta Morphol. Neerl.-Scand. 27: 75–81.

    Google Scholar 

  • Wainwright, P.C. (1986). Motor correlates of learning gehaviour: feeding on novel prey by pumpkinseed sunfish (Lepomis gibbosus). J. exp. Biol. 126: 237–247.

    Google Scholar 

  • Wainwright, P.C. (1988). Morphology and ecology; functional basis of feeding constraints in Caribbean labrid fishes. Ecology 69: 635–645.

    Google Scholar 

  • Wainwright, P.C. (1989a). Functional morphology of the pharyngeal jaw apparatus in perciform fishes: an experimental analysis of the Haemulidae. J. Morph. 300: 231–245.

    Google Scholar 

  • Wainwright, P.C. (1989b). Prey processing in haemulid fishes: patterns of variation in pharyngeal jaw muscle activity. J. Exp. Biol. 141: 359–375.

    Google Scholar 

  • Wainwright, P.C. and G.V. Lauder (1986). Feeding biology of sunfishes: patterns of variation in the feeding mechanism. Zoo. J. Linn. Soc. 88: 217–228.

    Google Scholar 

  • Wainwright, P.C., C.P. Sanford, S.M. Reilly, and G.V. Lauder (1989). Evolution of motor patterns: Aquatic feeding in salamanders and ray-finned fishes. Brain. Behav. and Evol. 34: 329–341.

    Google Scholar 

  • Wainwright, S.A. (1988). Axis and Circumference. The Cylindrical Shape of Plants and Animals. Harvard Univ. Press.

  • Wake, D.B. (1982). Functional and evolutionary morphology. Perspect. Biol. Medic. 25: 603–620.

    Google Scholar 

  • Wake, D.B. (1991). Homoplasy: the results of natural selection or evidence of design limitations? Am. Nat. 3: 543–562.

    Google Scholar 

  • Wake, D.B. and A. Larson (1987). Multidimensional analysis of an evolving lineage. Science 238: 42–48.

    Google Scholar 

  • Wake, D.B. and G. Roth (1984). Complex Organismal Functions: Integration and Evolution in Vertebrates. In: Wake, D.B. and G. Roth (eds.), Report of the Dahlem Workshop on Complex Organismal Functions: Integration and Evolution in Vertebrates: pp. V–VI. John Wiley and Sons.

  • Wake, M.H. (1992). Morphology, the study of form and function in modern evolutionary biology. In: Futuyama, D. and J. Antonorics (eds.), Oxford Surveys in Evolutionary Biology: 289–346.

  • Wimsatt, W.C. (1974). Complexity and organization. Boston Stud. Phil. Sci. 20: 67–86.

    Google Scholar 

  • Witte, F., C.D.N. Barel and R.J.C. Hoogerhoud (1990). Phenotypic plasticity of anatomical structures and its ecomorphological significance. Neth. J. Zool. 40: 278–298.

    Google Scholar 

  • Zweers, G.A. (1979). Explanation of structure by optimization and systemization. Neth. J. Zool. 29: 418–440.

    Google Scholar 

  • Zweers, G.A. (1985). Greek classicism in living structure? Some deductive pathways in animal morphology. Acta Biotheor. 34: 249–276.

    Google Scholar 

  • Zweers, G.A. (1988). Holism and neutralism for open systems. Am. Zool. 28: 277–288.

    Google Scholar 

  • Zweers, G.A. (1991a). Transformation of avian feeding mechanisms: a deductive method. Acta Biotheor. 39: 15–36.

    Google Scholar 

  • Zweers, G.A. (1991b). Pathways and space for evolution of feeding mechanisms in birds. In: Dudley E.C. (ed.), The Unity of Evolutionary Biology: 1530–1547. Portland, Oregon, Dioscorides Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barel, C.D.N. Concepts of an architectonic approach to transformation morphology. Acta Biotheor 41, 345–381 (1993). https://doi.org/10.1007/BF00709371

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00709371

Keywords

Navigation