Skip to main content
Log in

Interpreting Quantum Mechanics according to a Pragmatist Approach

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The aim of this paper is to show that quantum mechanics can be interpreted according to a pragmatist approach. The latter consists, first, in giving a pragmatic definition to each term used in microphysics, second, in making explicit the functions any theory must fulfil so as to ensure the success of the research activity in microphysics, and third, in showing that quantum mechanics is the only theory which fulfils exactly these functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Healey, R.: The Philosophy of Quantum Mechanics: An Interactive Interpretation. Cambridge University Press, Cambridge (1989), p. 6

    Google Scholar 

  2. Van Fraassen, B.: Quantum Mechanics: An Empiricist View. Clarendon Press, Oxford (1991), p. 4

    Google Scholar 

  3. Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden’ variables I and II. Phys. Rev. 85, 166–193 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bohm, D., Hiley, B.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge & Kegan Paul, London (1993)

    Google Scholar 

  5. Ghirardi, G., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ghirardi, G., Pearle, P., Rimini, A.: Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78–89 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  7. Everett, H.: ‘Relative state’ formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  8. DeWitt, B., Graham, N. (eds.): The Many Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1973)

    Google Scholar 

  9. Saunders, S.: Time, quantum mechanics, and decoherence. Synthese 102, 235–266 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wallace, D.: Everett and structure. Stud. Hist. Philos. Mod. Phys. 34, 87–105 (2002)

    Article  Google Scholar 

  11. Albert, D., Loewer, B.: Interpreting the many worlds interpretation. Synthese 77, 195–213 (1988)

    Article  MathSciNet  Google Scholar 

  12. Lockwood, M.: Mind, Brain, and the Quantum. Blackwell, Oxford (1989)

    Google Scholar 

  13. Dieks, D.: Modal interpretation of quantum mechanics, measurements, and macroscopic behaviour. Phys. Rev. A 49, 2290–2300 (1994)

    Article  ADS  Google Scholar 

  14. Bub, J.: Quantum mechanics without the projection postulate. Found. Phys. 22, 737–754 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  15. Griffiths, R.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36, 219–272 (1984)

    Article  MATH  ADS  Google Scholar 

  16. Gell-Mann, M., Hartle, J.: Quantum mechanics in the light of quantum cosmology. In: Zurek, W. (ed.) Complexity, Entropy, and the Physics of Information, pp. 425–458. Addison-Wesley, Reading (1990)

    Google Scholar 

  17. Omnès, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  18. D’Espagnat, B.: Veiled Reality: An Analysis of Present-Day Quantum Mechanical Concepts. Addison-Wesley, Reading (1995)

    Google Scholar 

  19. Mittelstaedt, P.: The Interpretation of Quantum Mechanics and the Measurement Process. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  20. Bächtold, M.: Five formulations of the quantum measurement problem in the frame of the standard interpretation. J. Gen. Philos. Sci. 39, 1 (2008)

    MathSciNet  Google Scholar 

  21. Peirce, C.S.: Collected Papers. Harvard University Press, Cambridge (1931–1960)

    Google Scholar 

  22. James, W.: The Works of William James. Harvard University Press, Cambridge (1975)

    Google Scholar 

  23. Hughes, R.I.G.: The Structure and Interpretation of Quantum Mechanics. Harvard University Press, Cambridge (1989)

    Google Scholar 

  24. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht (1995)

    MATH  Google Scholar 

  25. Bitbol, M.: Some steps towards a transcendental deduction of quantum mechanics. Philos. Nat. 35, 253–280 (1998)

    MathSciNet  Google Scholar 

  26. Ballentine, L.: Quantum Mechanics: A Modern Development. World Cientific, Singapore (1998)

    MATH  Google Scholar 

  27. Ludwig, G.: An Axiomatic Basis for Quantum Mechanics, vol. 1. Springer, Berlin (1985)

    MATH  Google Scholar 

  28. Ludwig, G.: An Axiomatic Basis for Quantum Mechanics, vol. 2. Springer, Berlin (1987)

    MATH  Google Scholar 

  29. Finkelstein, D.: Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg. Springer, Berlin (1996)

    MATH  Google Scholar 

  30. De Muynck, W.: Foundations of Quantum Mechanics, an Empiricist Approach. Kluwer Academic, Dordrecht (2002)

    MATH  Google Scholar 

  31. Fuchs, C.: Quantum mechanics as quantum information, mostly. J. Mod. Opt. 50, 987–1023 (2003)

    MATH  ADS  Google Scholar 

  32. Margenau, H.: Measurements and quantum states. Philos. Sci. 30, 6 (1963)

    Google Scholar 

  33. Busch, P., Lahti, P., Mittelstaedt, P.: The Quantum Theory of Measurement. Springer, Berlin (1996)

    MATH  Google Scholar 

  34. Dirac, P.: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1958)

    MATH  Google Scholar 

  35. Popper, K.: A World of Propensities. Thoemmes Press, Bristol (1990)

    Google Scholar 

  36. Shimony, A.: Search for a Naturalistic World View, vol. II. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  37. Reichenbach, H.: Philosophic Foundations of Quantum Mechanics. University of California Press, Berkeley (1944)

    Google Scholar 

  38. Putnam, H.: Reason, Truth and History. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  39. Jordan, T.: Linear Operators for Quantum Mechanics. Wiley, New York (1969)

    MATH  Google Scholar 

  40. Jordan, T.: Why −i is the momentum. Am. J. Phys. 43, 1089–1093 (1975)

    Article  ADS  Google Scholar 

  41. Adler, S.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  42. Aaronson, S.: Is quantum mechanics an island in theory space? In: Khrennikov, A., (ed.) Proceedings of the Växjö Conference “Quantum Theory: Reconsideration of Foundations—2” (2004). See also: arXiv, quant-ph/0402095

  43. Deutsch, D.: Quantum theory of probability and decisions. Proc. R. Soc. Lond. A 455, 3129–3137 (1999)

    MATH  ADS  MathSciNet  Google Scholar 

  44. Zurek, W.: Environment—assisted invariance, causality, and probabilities in quantum physics. Phys. Rev. Lett. 90, 120404 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  45. Saunders, S.: Derivation of the Born rule from operational assumptions. Proc. R. Soc. A 460, 1–18 (2004)

    Article  MathSciNet  Google Scholar 

  46. Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  47. Barrett, J.: The Quantum Mechanics of Minds and Worlds. Oxford University Press, Oxford (1999), p. 251

    Google Scholar 

  48. Dirac, P.: A new notation for quantum mechanics. Proc. Camb. Philos. Soc. 35, 416–418 (1939)

    Article  MathSciNet  Google Scholar 

  49. Jauch, J.: Foundations of Quantum Mechanics. Addison-Wesley, Reading (1968), pp. 175–178

    MATH  Google Scholar 

  50. Stone, M.: Linear Transformations in Hilbert Space and their Applications to Analysis. Am. Math. Soc., New York (1932)

    Google Scholar 

  51. Mackey, G.: The Mathematical Foundations of Quantum Mechanics: A Lecture-Note Volume. Benjamin, New York (1963), pp. 81–85

    MATH  Google Scholar 

  52. Schrödinger, E.: The present situation in quantum mechanics. Proc. Am. Philos. Soc. 124, 323–338 (1935). §2

    Google Scholar 

  53. Weinberg, S.: Precision tests of quantum mechanics. Phys. Rev. Lett. 62, 485–488 (1989)

    Article  ADS  Google Scholar 

  54. Gisin, N.: Weinberg’s non-linear quantum mechanics and superluminal communications. Phys. Lett. A 143, 1–2 (1990)

    Article  ADS  Google Scholar 

  55. Polchinski, J.: Weinberg’s nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox. Phys. Rev. Lett. 66, 397–400 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. Zurek, W.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)

    Article  Google Scholar 

  57. Giulini, D., et al. (eds.): Decoherence and the Appearance of the Classical World in Quantum Theory. Springer, Berlin (1996)

    MATH  Google Scholar 

  58. Blanchard, Ph., et al. (eds.): Decoherence: Theoretical, Experimental, and Conceptual Problems. Springer, Berlin (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Bächtold.

Additional information

This work received financial support from the European Union (Marie Curie Actions).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bächtold, M. Interpreting Quantum Mechanics according to a Pragmatist Approach. Found Phys 38, 843–868 (2008). https://doi.org/10.1007/s10701-008-9240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-008-9240-2

Keywords

Navigation