Skip to main content
Log in

The Compatibility of Complex Systems and Reduction: A Case Analysis of Memory Research

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

Some theorists who emphasize the complexity of biological and cognitive systems and who advocate the employment of the tools of dynamical systems theory in explaining them construe complexity and reduction as exclusive alternatives. This paper argues that reduction, an approach to explanation that decomposes complex activities and localizes the components within the complex system, is not only compatible with an emphasis on complexity, but provides the foundation for dynamical analysis. Explanation via decomposition and localization is nonetheless extremely challenging, and an analysis of recent cognitive neuroscience research on memory is used to illustrate what is involved. Memory researchers split between advocating memory systems and advocating memory processes, and I argue that it is the latter approach that provides the critical sort of decomposition and localization for explaining memory. The challenges of linking distinguishable functions with brain processes is illustrated by two examples: competing hypotheses about the contribution of the hippocampus and competing attempts to link areas in frontal cortex with memory processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atkinson, R.C. and Shiffrin, R.M. (1968), 'Human memory: A proposed system and its control processes', in K.W. Spence and J.T. Spence, eds., The Psychology of Learning and Motivation: Advances in Research and Theory, Vol. 2, pp. 89–195, New York: Academic.

    Google Scholar 

  • Bechtel, W. (2001), 'Decomposing and localizing vision: An exemplar for cognitive neuroscience', in W. Bechtel, P. Mandik, J. Mundale and R.S. Stufflebeam, eds., Philosophy and the neurosciences: A reader, Oxford: Basil Blackwell.

    Google Scholar 

  • Bechtel, W. and Abrahamsen, A. (in press), Connectionism and the mind: Parallel processing, dynamics, and evolution in networks, Second Edition, Oxford: Basil Blackwell.

  • Bechtel, W. and Richardson, R.C. (1993), Discovering complexity: Decomposition and localization as scientific research strategies, Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Beer, R.D. (2000), 'Dynamical approaches to cognitive science', Trends in Cognitive Sciences 4, pp. 91–99.

    Google Scholar 

  • Blaxton, T.A. (1989), 'Investigating dissociations among memory measures: Support for a transfer appropriate processing framework', Journal of Experimental Psychology: Learning, Memory, and Cognition 15, pp. 657–668.

    Google Scholar 

  • Bransford, J.D., Franks, J.J., Morris, C.D. and Stein, B.S. (1979), 'Some general constraints on learning and memory research', in L.S. Cermak & F.I.M. Craik, eds., Levels of processing in human memory, Hillsdale, NJ: Erlbaum, pp. 331–354.

    Google Scholar 

  • Brewer, J.B., Zhao, Z., Desmond, J.E., Glover, G.H. and Gabrieli, J.D.E. (1998), 'Making memories: Brain activity that predicts how well visual experience will be remembered', Science 281, pp. 1185–1187.

    Google Scholar 

  • Buckner, R.L. (1996), 'Beyond HERA: Contributions of specific prefrontal brain areas to long-term memory retrieval', Psychonomic Bulletin and Review 3(2), pp. 149–158.

    Google Scholar 

  • Clark, A. (1997), Being there, Cambridge, MA: MIT Press.

    Google Scholar 

  • Cohen, N.J. and Eichenbaum, H. (1993), Memory, amnesia, and the hippocampal system, Cambridge, MA: MIT Press.

    Google Scholar 

  • Cohen, N.J. and Squire, L.R. (1980), 'Preserved learning and retention of pattern-analyzing skill in amnesia: Dissociation of knowing how and knowing that', Science 210, pp. 207–210.

    Google Scholar 

  • Corkin, S. (1968), 'Acquisition of motor skill after bilateral medial temporal-bole excision', Neuropsychologia 6, pp, 255–265.

    Google Scholar 

  • Corkin, S., Amaral, D., Gonzalez, R. and Johnson, K. et al. (1997), 'H.M.'s medial temporal lesion: Findings from magnetic resonance imaging', The Journal of Neuroscience 17, pp. 3964–3979.

    Google Scholar 

  • Eichenbaum, H., Otto, T. and Cohen, N.J. (1993). 'Two component functions of the hippocampal memory systems', Behavioral and Brain Sciences 17(3), pp. 449–472.

    Google Scholar 

  • Elman, J.L. (1991), 'Distributed representations, simple recurrent networks, and grammatical structure', Machine Learning 7, pp. 195–224.

    Google Scholar 

  • Felleman, D.J. and van Essen, D.C. (1991), 'Distributed hierarchical processing in the primate cerebral cortex', Cerebral Cortex 1, pp. 1–47.

    Google Scholar 

  • Gabrieli, J.D.E., Poldrack, R.A. and Desmond, J.E. (1998), 'The role of left prefrontal cortex in language and memory', Proceedings of the National Academy of Sciences, USA 95, pp. 906–913.

    Google Scholar 

  • Hetherington, P.A. and Shapiro, M.L. (1993), 'A simple network model simulates hippocampal place fields: 2. Computing goal directed trajectories and memory fields', Behavioral Neuroscience 107, pp. 434–443.

    Google Scholar 

  • Hinton, G.E. and Shallice, T. (1991), 'Lesioning a connectionist network: Investigations of acquired dyslexia', Psychological Review 98, pp. 74–95.

    Google Scholar 

  • Hintzman, D.L. (1990), 'Human learning and memory: connections and dissociations', Annual Review of Psychology 41, pp. 109–139.

    Google Scholar 

  • Kelley, W.L., Miezin, F.M., McDermott, K., Buckner, R.L., Raichle, M.E., Cohen, N.J. and Petersen, S. E. (1998), 'Hemispheric specialization in human dorsal frontal cortex and medial temporal lobes for verbal and nonverbal memory encoding', Neuron 20, pp. 927–936.

    Google Scholar 

  • Kelso, J.A.S. (1995), Dynamic patterns: The self organization of brain and behavior, Cambridge, MA: MIT Press.

    Google Scholar 

  • Kolers, P.A. and Roediger III, H.L. (1984), 'Procedures of Mind', Journal of Verbal Learning and Verbal Behavior 23, pp. 425–449.

    Google Scholar 

  • Lashley, K.S. (1950), 'In search of an engram', Symposium on Experimental Biology 4, pp. 45–48.

    Google Scholar 

  • McClelland, J. L., McNaughton, B. L. and O'Reilly, R. C. (1995). 'Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory', Psychological Review 102(3), pp. 419–457.

    Google Scholar 

  • McDermott, K.B. and Roediger III, H.L. (1996), 'Exact conceptual repetition dissociate conceptual memory tests: Problems for transfer appropriate processing theories', Canadian Journal of Experimental Psychology 50, pp. 57–71.

    Google Scholar 

  • Miller, G.A. (1956), 'The magical number seven, plus or minus two: some limits on our capacity for processing information', Psychological Review 63, pp. 81–97.

    Google Scholar 

  • Morris, R.G.M., Garrud, P., Rawlins, J.N.P. and O'Keefe, J. (1982). 'Place navigation impaired in rats with hippocampal lesions', Nature 297, pp. 681–683.

    Google Scholar 

  • Mundale, J. (1998), 'Brain mapping', in W. Bechtel and G. Graham, eds., A companion to cognitive science, Oxford: Basil Blackwell.

    Google Scholar 

  • Nadel, L. (1994), 'Hippocampus, space, and relations', Behavioral and Brain Sciences 17, pp. 490–491.

    Google Scholar 

  • Nyberg, L., Cabeza, R. and Tulving, E. (1998). 'Asymmetric frontal activation during episodic memory: what kind of specificity?' Trends in Cognitive Sciences 2, pp. 419–20.

    Google Scholar 

  • O'Keefe, J. and Dostrovsky, J. (1971), 'The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely moving rat', Brain Research 34, pp. 171–175.

    Google Scholar 

  • O'Keefe, J. and Nadel, L. (1978). The hippocampus as a cognitive map, Oxford: Clarendon Press.

    Google Scholar 

  • Petersen, S.E., Fox, P.J., Posner, M.I., Mintun, M. and Raichle, M.E. (1989), 'Positron emission tomographic studies of the processing single words', Journal of Cognitive Neuroscience 1, pp. 153–170.

    Google Scholar 

  • Plaut, D.C., McClelland, J.L., Seidenberg, M.S. and Patterson, K.E. (1996), 'Understanding normal and impaired word reading: Computational principles in quasi-regular domains', Psychological Review 103, pp. 56–115.

    Google Scholar 

  • Port, R. and van Gelder, T. (1995), It's about time, Cambridge, MA: MIT Press.

    Google Scholar 

  • Redish, A. D. (1999). Beyond the cognitive map: From place cells to episodic memory, Cambridge, MA: MIT Press.

    Google Scholar 

  • Roediger III, H.L., Buckner, R.L. and McDermott, K.B. (1999), 'Components of processing', in J.K. Foster and M. Jelicic eds., Memory: Systems, process, or function. Oxford: Oxford University Press, pp. 32–65.

    Google Scholar 

  • Rolls, E.T. and Treves, A. (1998), Neural networks and brain function, Oxford: Oxford University Press.

    Google Scholar 

  • Schacter, D.L., Eich, J.E. and Tulving, E. (1878), 'Richard Semon's theory of memory', Journal of Verbal Learning and Verbal Behavior 17, pp. 721–743.

    Google Scholar 

  • Schacter, D.L. and Tulving, E. (1994), 'What are the memory systems of 1994?' in D. L. Schacter and E. Tulving, eds., Memory systems 1994, Cambridge, MA: MIT Press, pp. 1–38.

    Google Scholar 

  • Scoville, W.B. and Milner, B. (1957), 'Loss of recent memory after bilateral hippocampal lesions', Journal of Neurology, Neurosurgery, and Psychiatry 20, pp. 11–21.

    Google Scholar 

  • Skarda, C.A. and Freeman, W.J. (1987), 'How brains make chaos to make sense of the world', Behavioral and Brain Sciences 10, pp. 161–195.

    Google Scholar 

  • Sperling, G. (1960), 'The information available in brief visual presentations', Psychological Monographs 74.

  • Touretzky, D.S. and Redish, A.D. (1996), 'A theory of rodent navigation based on interacting representations of space', Hippocampus 6, pp. 247–270.

    Google Scholar 

  • Tulving, E. (1972), 'Episodic and semantic memory', in E. Tulving and W. Donaldson, eds., Organization of memory, New York: Academic, pp. 381–403.

    Google Scholar 

  • Tulving, E. (1984), 'Multiple learning and memory systems', in K.M.J. Lagerspetz and P. Niemi, eds., Psychology in the 1990s, Elsevier, pp. 163–184.

  • Tulving, E. (1985), 'How many memory systems are there?', American Psychologist 40, pp. 385–398.

    Google Scholar 

  • Tulving, E. (1989). 'Memory: Performance, knowledge, and experience', European Journal of Cognitive Psychology 1, pp. 3–26.

    Google Scholar 

  • Tulving, E. (1999), 'Study of memory: Processes and systems', in J.K. Foster and M. Jelicic, eds., Memory: Systems, process, or function, Oxford: Oxford University Press, pp. 11–30.

    Google Scholar 

  • Tulving, E., Heyman, C.A.G. and MacDonald, C.A. (1991), 'Long-lasting perceptual priming and semantic learning in amnesia. A case experiment, Journal of Experimental Psychology 17, pp. 595–617.

    Google Scholar 

  • Tulving, E., Kapur, S., Craik, F.I., M., Moscovitch, M. and Houle, S. (1994), 'Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings', Proceedings of the National Academy of Sciences (USA) 91, pp. 2016–2020.

    Google Scholar 

  • Tulving, E. and Schacter, D.L. (1990), 'Priming and human memory systems', Science 247, pp. 301–306.

    Google Scholar 

  • van Essen, D.C. and Gallant, J.L. (1994), 'Neural mechanisms of form and motion processing in the primate visual system, Neuron 13, pp. 1–10.

    Google Scholar 

  • van Gelder, T. (1995), 'What might cognition be, if not computation', The Journal of Philosophy 92, pp. 345–381.

    Google Scholar 

  • van Gelder, T. (1998), 'The dynamical hypothesis in cognitive science', Behavioral and Brain Sciences 21, pp. 615–628.

    Google Scholar 

  • van Orden, G. C. and Paap, K.R. (1997), 'Functional neural images fail to discover the pieces of the mind in the parts of the brain', Philosophy of Science 64, pp. S85–S94.

    Google Scholar 

  • van Orden, G.C., Pennington, B.F. and Stone, G.O. (in preparation), 'What do double dissociations prove? Inductive methods and isolable systems'.

  • Wagner, A.D., Schacter, D.L., Rotte, M., Koutstaal, W., Maril, A., Dale, A.M., Rosen, B.R. and Buckner, R.L. (1998) 'Building memories: Remembering and forgetting of verbal materials as predicted by brain activity', Science 281, pp. 1188–1191.

    Google Scholar 

  • Waugh, N.C. and Norman, D.A. (1965), 'Primary memory', Psychological Review 72, pp. 89–104.

    Google Scholar 

  • Wheeler, M. (in press), 'Explaining the evolved: Homunculi, modules, and internal representation', Robotics and Autonomous Systems.

  • Wimsatt, W. C. (1986) 'Forms of aggregativity', in A Donagan, A.N. Perovich, Jr., and M.V. Wedin, eds, Human nature and natural knowledge, Dordrecht: Reidel, pp. 259–291.

    Google Scholar 

  • Zipser, D. (1985). 'A computational model of hippocampal place fields', Behavioral Neuroscience 99, pp. 1006–1018.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechtel, W. The Compatibility of Complex Systems and Reduction: A Case Analysis of Memory Research. Minds and Machines 11, 483–502 (2001). https://doi.org/10.1023/A:1011803931581

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011803931581

Keywords

Navigation