Skip to main content
Log in

The problem of being a paradigm: the emergence of neural stem cells as example for “Kuhnian” revolution in biology or misconception of the scientific community?

  • Focus
  • Published:
Poiesis & Praxis

Abstract

In a thought experiment we want to test how the emergence of adult neural stem cells could constitute an example for a scientific revolution in the sense of Thomas Kuhn. In his major work, “The structure of scientific revolutions, 3rd edn, University of Chicago Press, Chicago” (Kuhn 1996), the philosopher of science, Thomas Kuhn, states that scientific progress is not a cumulative process, but new theories appear by a rather revolutionary sequence of events. Kuhn built his theory on landmark events taken from chemistry and physics, lacking examples from biology. Beginning with Ramon y Cajal’s famous quote, “no new neurons after birth”, from the early years of the twentieth century, and Reynolds and Weiss’s conflicting finding in 1992 of adult neural stem cells giving rise to new neurons, we will test how the finding of neural stem cells in the adult brain matches with Kuhn’s theory. The pivotal problem of defining a paradigm will be our main focus, since the emergence of adult neural stem cells has been acclaimed by the scientific community as the rebuttal of Ramon y Cajal’s paradigm.

Zusammenfassung

Ziel ist es, in einem Gedankenexperiment zu testen, wie die Entstehung adulter neuraler Stammzellen als Beispiel für eine wissenschaftliche Revolution im Sinne Thomas Kuhns dienen könnte. In seinem Hauptwerk, “The Structure of Scientific Revolutions” (Kuhn 1996), erklärt der Wissenschaftsphilosoph Thomas Kuhn, dass wissenschaftlicher Fortschritt kein kumulativer Prozess sei, sondern dass neue Theorien durch eine geradezu revolutionäre Abfolge von Ereignissen entstehen. Kuhns Theorie fußt auf bahnbrechendenden Entwicklungen aus der Chemie und Physik, Beispiele aus der Biologie fehlen. Wir beginnen mit Ramon y Cajals berühmtem Zitat “Keine neuen Neuronen nach der Geburt” aus dem frühen 20. Jahrhundert und der Erkenntnis von Reynolds und Weiss aus dem Jahr 1992, dass adulte neurale Stammzellen neue Neuronen entstehen lassen, die dem Zitat von Ramon y Cajal widerspricht. Von dieser Situation ausgehend, testen wir, wie die Erkenntnis über neurale Stammzellen im erwachsenen Gehirn mit Kuhns Theorie zusammenpasst. Dabei konzentrieren wir uns auf das zentrale Problem der Definition eines Paradigmas, da die Entstehung adulter neuraler Stammzellen von der Wissenschaftsgemeinschaft als Widerlegung des Paradigmas von Ramon y Cajal begrüßt wurde.

Résumé

Dans un processus de cheminement intellectuel, nous voulons vérifier si l’émergence des cellules souches neurales adultes constitue un exemple de révolution scientifique au sens où l’entend Thomas Kuhn. Dans son œuvre principale, “The Structure of Scientific Revolutions” (Kuhn 1996), le philosophe scientifique Thomas Kuhn énonce que le progrès scientifique n’est pas un processus cumulatif mais plutôt que les nouvelles théories apparaissent suite à une séquence d’évènements révolutionnaires. La biologie ne lui apportant que peu d’exemples, c’est en se basant sur la physique et la chimie que Kuhn a construit sa théorie sur ces évènements clés. À partir de la célèbre citation de Ramon y Cajal: “aucun nouveau neurone après la naissance”, datant du début du vingtième siècle, et de la découverte contradictoire de cellules souches neurales adultes, par Reynold et Weiss, donnant lieu à de nouveaux neurones, en 1992, nous analysons si la théorie de Kuhn se vérifie avec cette découverte. La question centrale de la définition d’un paradigme constitue notre principale préoccupation puisque la découverte de cellules souche adultes a été encesée par la communauté scientifique comme un réfus du paradigme de Ramon y Cajal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen E (1912) The cessation of mitosis in the central nervous system of the albino rat. J Comp Neurol 19:547–568

    Google Scholar 

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–457 10.1002/cne.901370404

    Article  Google Scholar 

  • Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335 10.1002/cne.901240303

    Article  Google Scholar 

  • Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126:337–389 10.1002/cne.901260302

    Article  Google Scholar 

  • Anchan RM, Reh TA, Angello J et al (1991) EGF and TGF-alpha stimulate retinal neuroepithelial cell proliferation in vitro. Neuron 6:923–936 10.1016/0896-6273(91)90233-P

    Article  Google Scholar 

  • Benninghoff J, Schmitt A, Mössner et al (2002) When cells become depressed: focus on neural stem cells in novel treatment strategies against depression. J Neural Transm 109:947–962

  • Birecree E, King LE Jr, Nanney LB (1991) Epidermal growth factor and its receptor in the developing human nervous system. Brain Res Dev Brain Res 60:145–154 10.1016/0165-3806(91)90043-I

    Article  Google Scholar 

  • Blau HM, Brazelton TR, Weimann JM (2001) The evolving concept of a stem cell: entity or function? Cell 105:829–841 10.1016/S0092-8674(01)00409-3

    Article  Google Scholar 

  • Carrier M (2002) Explaining scientific progress: Lakatos’ methodological account of Kuhnian patterns of theory change. In: Kampis G, Kvasz L, Stöltzner M (eds) Appraising Lakatos—mathematics, methodology, and the man. Cluwer, Dordrecht, pp 53–71

    Chapter  Google Scholar 

  • Cattaneo E, McKay R (1990) Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347:762–765 10.1038/347762a0

    Article  Google Scholar 

  • Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    Article  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156 10.1038/292154a0

    Article  Google Scholar 

  • Fallon JH, Seroogy KB, Loughlin SE et al (1984) Epidermal growth factor immunoreactive material in the central nervous system: location and development. Science 224:1107–1109 10.1126/science.6144184

    Article  Google Scholar 

  • Goldman SA, Nottebohm F (1983) Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 80:2390–2394 10.1073/pnas.80.8.2390

    Article  Google Scholar 

  • Gomez-Pinilla F, Knauer DJ, Nieto-Sampedro M (1988) Epidermal growth factor receptor immunoreactivity in rat brain. Development and cellular localization. Brain Res 438:385–390 10.1016/0006-8993(88)91369-8

    Article  Google Scholar 

  • Gratzner HG (1982) Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218:474–475 10.1126/science.7123245

    Article  Google Scholar 

  • Gross CG (2000) Neurogenesis in the adult brain: death of a dogma. Nature Rev 1:67–73 10.1038/35036235

    Article  Google Scholar 

  • Johansson CB, Svensson M, Wallstedt L et al (1999) Neural stem cells in the adult human brain. Exp Cell Res 253:733–736 10.1006/excr.1999.4678

    Article  Google Scholar 

  • Kaplan MS, Bell DH (1983) Neuronal proliferation in the 9-month-old rodent-radioautographic study of granule cells in the hippocampus. Exp Brain Res 52:1–5 10.1007/BF00237141

    Article  Google Scholar 

  • Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197:1092–1094 10.1126/science.887941

    Article  Google Scholar 

  • Korr H (1997) Do multilineage potential neural stem cells really exist in the brain of adult mammals? Trends Neurosci 20:203–204 10.1016/S0166-2236(97)84104-5

    Article  Google Scholar 

  • Kuhn TS (1996) The structure of scientific revolutions, 3rd edn. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Lakatos I (1978) Falsification and the methodology of scientific research programmes. In: Worrall J, Currie G (eds) The methodology of scientific research programmes (philosophical papers I). Cambridge University Press, Cambridge, pp 8–101

    Chapter  Google Scholar 

  • Lakatos I, Musgrave A (1970) Criticism and the growth of knowledge. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250 10.1146/annurev.neuro.28.051804.101459

    Article  Google Scholar 

  • Morrison RS, Kornblum HI, Leslie FM et al (1987) Trophic stimulation of cultured neurons from neonatal rat brain by epidermal growth factor. Science 238:72–75 10.1126/science.3498986

    Article  Google Scholar 

  • Ramon y Cajal S (1928) Degeneration and regeneration of the nervous system. Oxford University Press, London

    Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710 10.1126/science.1553558

    Article  Google Scholar 

  • Sidman RL (1959) Histochemical studies on photoreceptor cells. Ann NY Acad Sci 74:182–195 10.1111/j.1749-6632.1958.tb39543.x

    Article  Google Scholar 

  • Stanfield BB, Trice JE (1988) Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp Brain Res 72:399–406

    Google Scholar 

  • Werner MH, Nanney LB, Stoscheck CM et al (1988) Localization of immunoreactive epidermal growth factor receptors in human nervous system. J Histochem Cytochem 36:81–86

    Article  Google Scholar 

  • Wilkins AS (1996) Are there “Kuhnian” revolutions in biology? Bioessays 18:695–696 10.1002/bies.950180902

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Benninghoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benninghoff, J., Möller, HJ., Hampel, H. et al. The problem of being a paradigm: the emergence of neural stem cells as example for “Kuhnian” revolution in biology or misconception of the scientific community?. Poiesis Prax 6, 3–11 (2009). https://doi.org/10.1007/s10202-008-0056-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10202-008-0056-0

Keywords

Navigation