Skip to main content
Log in

Common Bayesian Models for Common Cognitive Issues

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

How can an incomplete and uncertain model of the environment be used to perceive, infer, decide and act efficiently? This is the challenge that both living and artificial cognitive systems have to face. Symbolic logic is, by its nature, unable to deal with this question. The subjectivist approach to probability is an extension to logic that is designed specifically to face this challenge. In this paper, we review a number of frequently encountered cognitive issues and cast them into a common Bayesian formalism. The concepts we review are ambiguities, fusion, multimodality, conflicts, modularity, hierarchies and loops. First, each of these concepts is introduced briefly using some examples from the neuroscience, psychophysics or robotics literature. Then, the concept is formalized using a template Bayesian model. The assumptions and common features of these models, as well as their major differences, are outlined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. From which we derive directly Bayes’ theorem, which, strictly speaking, reads P(X 2 | X 1) = P(X 1|X 2) P(X 2)/P(X 1), provided P(X 1) ≠ 0. Most of the time though, both names and equations can be used interchangeably.

  2. We note that Landy et al. (1995) did not find this type of Bayesian model to be useful.

  3. Please note that, although the notation is the same, γt refers to γ elevated to the power of t, while R t refers to R at time index t.

References

  • Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262

    Google Scholar 

  • Anastasio TJ, Patton PE, Belkacem-Boussaid K (2000) Using Bayes’ rule to model multisensory enhancement in the superior colliculus. Neural Comput 12(5):1165–1187

    Article  Google Scholar 

  • Arulampalam S, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filter for online nonlinear/non-gaussian Bayesian tracking. IEEE Transact Signal Proc 50(2):174–188

    Google Scholar 

  • Banks MS (2004) Neuroscience: what you see and hear is what you get. Curr Biol 14(6):236–238

    Article  Google Scholar 

  • Battaglia PW, Jacobs RA, Aslin RN (2003) Bayesian integration of visual and auditory signals for spatial localization. J Opt Soc Am A 20(7):1391–1397

    Article  Google Scholar 

  • Bengio Y, Frasconi P (1995) An input/output HMM architecture. In: Tesauro G, Touretzky D, Leen T (eds) Advances in neural information processing systems 7. MIT Press, Cambridge, pp 427–434

  • Bessière P, Ahuactzin J-M, Aycard O, Bellot D, Colas F, Coué C, Diard J, Garcia R, Koike C, Lebeltel O, LeHy R, Malrait O, Mazer E, Mekhnacha K, Pradalier C, Spalanzani A (2003) Survey: Probabilistic methodology and techniques for artefact conception and development. Technical Report RR-4730, INRIA Rhône-Alpes, Montbonnot, France

  • Bessière P, Laugier C, Siegwart R (eds) (2008) Probabilistic reasoning and decision making in sensory-motor systems, vol 46 of STAR. Springer, Berlin

  • Bishop CM, Svensén M (2003) Bayesian hierarchical mixtures of experts. In: Proceedings of the ninteenth conference on uncertainty in artificial intelligence. Acapulco, Mexico

  • Boutilier C, Dean T, Hanks S (1999) Decision theoretic planning: Structural assumptions and computational leverage. J Artif Intell Res (JAIR) 11:1–94

    Google Scholar 

  • Brockwell PJ, Davis RA (2000) Introduction to time series and forecasting, 2nd edn. Springer, Berlin

    Google Scholar 

  • Dean T, Kanazawa K (1989) A model for reasoning about persistence and causation. Comput Intell 5(3):142–150

    Article  Google Scholar 

  • Diard J, Bessière P (2008) Bayesian maps: probabilistic and hierarchical models for mobile robot navigation. In: Bessière P, Laugier C, Siegwart R (eds) Probabilistic reasoning and decision making in sensory-motor systems, vol 46. Springer Tracts in Advanced Robotics. Springer, Berlin, pp 153–176

  • Drewing K, Ernst M (2006) Integration of force and position cues for shape perception through active touch. Brain Res 1078:92–100

    Article  Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870):429–433

    Article  Google Scholar 

  • Frey BJ (1998) Graphical models for machine learning and digital communication. MIT Press, Cambridge

    Google Scholar 

  • Geisler WS, Kersten D (2002) Illusions, perception and Bayes. Nature Neuroscience 5(6):598–604

    Google Scholar 

  • Gepshtein S, Banks MS (2003) Viewing geometry determines how vision and haptics combine in size perception. Curr Biol 13(6):483–488

    Article  Google Scholar 

  • Ghahramani Z, Wolpert DM, Jordan MI (1997) Computational models of sensorimotor integration. In: Morasso PG, Sanguineti V (eds) Self-organization, computational maps and motor control. Elsevier, Amsterdam, pp 117–147

  • Gopnik A, Schulz L (2004) Mechanisms of theory formation in young children. Trends Cogn Sci 8(8):371–377

    Article  Google Scholar 

  • Haith A, Jackson C, Miall C, Vijayakumar S (2008) Unifying the sensory and motor components of sensorimotor adaptation. In: Advances in neural information processing systems (NIPS 2008)

  • Harvey AC (1992) Forecasting, structural time series models and the Kalman filter. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hauskrecht M, Meuleau N, Boutilier L, Kaelbling L, Dean T (1998) Hierarchical solution of markov decision processes using macro-actions. In: Proceedings of the 14-th conference on uncertainty in artificial intelligence. pp 220–229.

  • Hillis JM, Watt SJ, Landy MS, Banks MS (2004) Slant from texture and disparity cues: optimal cue combination. J Vis 4:967–992

    Google Scholar 

  • Jacobs RA (1999) Optimal integration of texture and motion cues to depth. Vis Res 39:3621–3629

    Article  Google Scholar 

  • Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive mixtures of local experts. Neural Comput 3:79–87

    Article  Google Scholar 

  • Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, Cambridge

    Google Scholar 

  • Jensen F (1996) An introduction to Bayesian networks. UCL Press, London

    Google Scholar 

  • Jordan MI (1999) Learning in graphical models. MIT Press, Cambridge (Edited Volume)

  • Jürgens R, Becker W (2006) Perception of angular displacement without landmarks: evidence for Bayesian fusion of vestibular, optokinetic, podokinesthetic, and cognitive information. Exp Brain Res 174:528–543

    Article  Google Scholar 

  • Kaelbling LP, Littman M, Cassandra A (1998) Planning and acting in partially observable stochastic domain. Artifi Intell 101(1–2):99–134

    Article  Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME–J Basic Eng 82(Series D):35–45

    Google Scholar 

  • Kemp C, Tenenbaum J (2008) The discovery of structural form. Proc Natl Acad Sci USA 105(31):10687–10692

    Article  Google Scholar 

  • Kersten D, Mamassian P, Yuille A (2004) Object perception as Bayesian inference. Ann Rev Psychol 55:271–304

    Article  Google Scholar 

  • Kiemel T, Oie K, Jeka J (2002) Multisensory fusion and the stochastic structure of postural sway. Biol Cybern 87:262–277

    Article  Google Scholar 

  • Knill DC, Richards W (1996) Perception as Bayesian inference. MIT Press, Cambridge, MA

    Google Scholar 

  • Koike C (2005) Bayesian approach to action selection and attention focusing. Application in autonomous robot programming. Thèse de doctorat, Inst. Nat. Polytechnique de Grenoble, Grenoble (FR)

  • Koike C, Bessière P, Mazer E (2008) Bayesian approach to action selection and attention focusing. In: Bessière P, Laugier C, Siegwart R (eds) Probabilistic reasoning and decision making in sensory-motor systems, vol 46 of STAR. Springer, Berlin

  • Koller D, Pfeffer A (1997) Object-oriented Bayesian networks. In: Proceedings of the thirteenth conference on uncertainty in artifical intelligence. Morgan Kaufmann publishers, San Francisco, pp 302–313

  • Körding KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L (2007) Causal inference in multisensory perception. PLoS one 2(9):e943

    Article  Google Scholar 

  • Körding KP, Wolpert DM (2004a) Bayesian integration in sensorimotor learning. Nature 427:244–247

    Article  Google Scholar 

  • Körding KP, Wolpert DM (2004b) The loss function of sensorimotor learning. Proc Natl Acad Sci USA 101(26):9839–9842

    Article  Google Scholar 

  • Kuipers BJ (2000) The spatial semantic hierarchy. Artifi Intell 119(1–2):191–233

    Article  Google Scholar 

  • Landy MS, Maloney LT, Johnston EB, Young M (1995) Measurement and modeling of depth cue combination: in defense of weak fusion. Vis Res 35:389–412

    Article  Google Scholar 

  • Laskey KB, Mahoney SM (1997) Network fragments: representing knowledge for constructing probabilistic models. In: Proceedings of the thirteenth conference on uncertainty in artifical intelligence. Morgan Kaufmann publishers, San Francisco, pp 334–341

  • Laurens J, Droulez J (2007) Bayesian processing of vestibular information. Biol Cybern 96:389–404

    Article  Google Scholar 

  • Laurens J, Droulez J (2008) Bayesian modeling of visuo-vestibular interactions. In: Bessière P, Laugier C, Siegwart R (eds) Probabilistic reasoning and decision making in sensory-motor systems, vol 46 of STAR. Springer, Berlin

  • Lebeltel O, Bessière P, Diard J, Mazer E (2004) Bayesian robot programming. Adv Robot 16(1):49–79

    Google Scholar 

  • Leonard J, Durrant-Whyte H, Cox I (1992) Dynamic map-building for an autonomous mobile robot. Intl J Robot Res 11(4):286–298

    Article  Google Scholar 

  • Maeda S (1990) Compensatory articulation during speech: evidence from the analysis and synthesis of vocal-tract shapes using an articulatory model. In: Hardcastle WJ, Marchal A (eds) Speech production and speech modelling. Kluwer, Dordrecht, pp 131–149

  • Mitchell TM (1997) Machine Learning. McGraw-Hill, Hall

    Google Scholar 

  • Murphy K (2002) Dynamic Bayesian networks: Representation, Inference and Learning. Ph.D. thesis, University of California, Berkeley, Berkeley, CA

  • Neal RM, Beal MJ, and Roweis ST (2003) Inferring state sequences for non-linear systems with embedded hidden Markov models. In: Thrun S, and al, (eds), Advances in neural information processing systems 16. MIT Press, Cambridge

  • Nefian A, Hayes M (1999) Face recognition using an embedded hmm. In: Proceedings of the IEEE conference on audio and video-based biometric person authentication. pp 19–24

  • Pearl J (1988) Probabilistic reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo

    Google Scholar 

  • Pineau J, Thrun S (2002) High-level robot behaviour control with POMDPs. In: AAAI workshop on cognitive robotics

  • Pizlo Z (2001) Perception viewed as an inverse problem. Vision Research 41(24):3141–3161

    Article  Google Scholar 

  • Poggio T (1984) Vision by man and machine. Sci Am 250:106–116

    Google Scholar 

  • Pradalier C, Colas F, Bessière P (2003) Expressing Bayesian fusion as a product of distributions: applications in robotics. In: Proceedings IEEE international conference on intelligent robots and systems

  • Rabiner LR (1989) A tutorial on hidden markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  • Rabiner LR, Juang B-H (1993) Fundamentals of speech recognition, chapter theory and implementation of Hidden Markov Models. Prentice Hall, Englewood Cliffs, pp 321–389

  • Robinson JA (1979) Logic: form and function. North-Holland, New York

  • Sato Y, Toyoizumi T, Aihara K (2007) Bayesian inference explains perception of unity and ventriloquism aftereffect: Identification of common sources of audiovisual stimuli. Neural Comput 19(12):3335–3355

    Article  Google Scholar 

  • Stocker A, Simoncelli E (2008) A Bayesian model of conditioned perception. In: Platt J, Koller D, Singer Y, Roweis S (eds) Advances in neural information processing systems 20. MIT Press, Cambridge, pp 1409–1416

  • Thrun S (2000) Probabilistic algorithms in robotics. AI Magazine 21(4):93–109

    Google Scholar 

  • Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge

    Google Scholar 

  • van der Kooij H, Jacobs R, Koopman B, Grootenboer H (1999) A multisensory integration model of human stance control. Biol Cybern 80:299–308

    Article  Google Scholar 

  • Waterhouse S, MacKay D, Robinson T (1996) Bayesian methods for mixtures of experts. In: Touretzky DS, Mozer MC, Hasselmo ME (eds) Advances in neural information processing systems, vol 8. The MIT Press, Cambridge, pp 351–357

  • Weiss Y, Simoncelli EP, Adelson EH (2002) Motion illusions as optimal percepts. Nature Neurosci 5(6):598–604

    Article  Google Scholar 

  • Wolpert D (2007) Probabilistic models in human sensorimotor control. Hum Movement Sci 26:511–24

    Article  Google Scholar 

  • Yuille AL, Bülthoff HH (1996) Bayesian decision theory and psychophysics. In: Knill DC, Richards W (eds) Perception as Bayesian inference. MIT Press, Cambridge, pp 123–161

  • Zupan LH, Merfeld DM, Darlot C (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol Cybern 86(3):209–230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Colas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colas, F., Diard, J. & Bessière, P. Common Bayesian Models for Common Cognitive Issues. Acta Biotheor 58, 191–216 (2010). https://doi.org/10.1007/s10441-010-9101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-010-9101-1

Keywords

Navigation