Skip to main content
Log in

Contextual Emergence in the Description of Properties

  • Published:
Foundations of Physics Aims and scope Submit manuscript

The role of contingent contexts in formulating relations between properties of systems at different descriptive levels is addressed. Based on the distinction between necessary and sufficient conditions for interlevel relations, a comprehensive classification of such relations is proposed, providing a transparent conceptual framework for discussing particular versions of reduction, emergence, and supervenience. One of these versions, contextual emergence, is demonstrated using two physical examples: molecular structure and chirality, and thermal equilibrium and temperature. The concept of stability is emphasized as a basic guiding principle of contextual property emergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amann A. (1988) “Chirality as a classical observable in algebraic quantum mechanics”. In: Amann A. et al. (eds) Fractals, Quasicrystals, Chaos, Knots, and Algebraic Quantum Mechanics. Kluwer Academic, Dordrecht, pp. 305–325

    Google Scholar 

  2. Amann A. (1993) “The Gestalt problem in quantum theory: generation of molecular shape by the environment”. Synthese 97:125–156

    Article  MathSciNet  Google Scholar 

  3. Anderson J.A., Rosenfeld E. (1989) Neurocomputing: Foundations of Research. MIT Press, Cambridge, MA

    Google Scholar 

  4. H. Atmanspacher and P. beim Graben, “Contextual emergence of mental states from neurodynamics,” Chaos Complex. Lett. (2006, forthcoming).

  5. Atmanspacher H., Kronz F. (1999) “Relative onticity”. In: Atmanspacher H., Amann A., Müller-Herold U. (eds) On Quanta, Mind and Matter: Hans Primas in Context. Kluwer Academic, Dordrecht, pp. 273–294

    Google Scholar 

  6. Avertisov V., Goldanskii V., Kuz’min V. (1991) “Handedness, origin of life and evolution”. Phys. Today 44(2):33–41

    Google Scholar 

  7. Batterman R. (2002) The Devil in the Details. Oxford University Press, Oxford

    MATH  Google Scholar 

  8. Berry M. (1994) “Asymptotics, singularities and the reduction of theories”. In: Prawitz D., Skyrms B., Westerstahl D. (eds) Logic, Methodology and Philosophy of Science IX: Proceedings of the Ninth International Congress of Logic, Methodology and Philosophy of Science, Uppsala 1991. Elsevier, North-Holland, Amsterdam, pp. 597–607

    Google Scholar 

  9. Bishop R.C. (2004) “Nonequilibrium statistical mechanics Brussels–Austin style”. Stud. Hist. Philos. Modrn Phys. 35:1–30

    Article  MathSciNet  Google Scholar 

  10. Born M., Oppenheimer R. (1927) “Zur Quantentheorie der Molekeln”. Ann. Phys. 84, 457–484

    MATH  Google Scholar 

  11. Compagner A. (1989) “Thermodynamics as the continuum limit of statistical mechanics”. Am. J. Phys. 57(2):106–117

    Article  MathSciNet  ADS  Google Scholar 

  12. Crook S., Gillett C. (2001) “Why physics alone cannot define the ‘physical”’. Can. J. Philos. 31, 333–360

    Google Scholar 

  13. Davidson D. (1980) Essays on Actions and Events. Oxford University Press, Oxford

    Google Scholar 

  14. DeCamp W.H. (1989) “The FDA perspective on the development of stereoisomers”. Chirality 1, 2–6

    Article  Google Scholar 

  15. Dingle R. (1973) Asymptotic Expansions: Their Derivation and Interpretation. Academic Press, New York

    MATH  Google Scholar 

  16. Dirac P.A.M. (1929) “Quantum mechanics of many-electron systems”. Proc. Roy. Soc. London A123:714–733

    ADS  Google Scholar 

  17. Feynman R., Leighton R., Sands M. (1965) The Feynman Lectures on Physics: Quantum Mechanics. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  18. Friedrichs K. (1955) “Asymptotic phenomena in mathematical physics”. Bull. Am. Math. Soci. 61, 485–504

    Article  MATH  MathSciNet  Google Scholar 

  19. Gaveau B., Schulman L.S. (2005) “Dynamical distance: coarse grains, pattern recognition, and network analysis”. Bull. des Sci. Math. 129, 631–642

    Article  MATH  MathSciNet  Google Scholar 

  20. Gillett C. (2002) “The varieties of emergence: their purposes, obligations and importance”. Grazer Philos. Stud. 65, 95–121

    Google Scholar 

  21. Gillett C. (2003) “Non-Reductive realization and non-reductive identity: what physicalism does not entail”. In: Walter S., Heckmann H.-D. (eds) Physicalism and Mental Causation. Imprint Academic, Thorverton, pp. 31–57

    Google Scholar 

  22. Gimzewski J., Joachim C. (1999) “Nanoscale science of single molecules using local probes”. Science 283:1683–1688

    Article  ADS  Google Scholar 

  23. Glansdorff P., Prigogine I. (1971) Thermodynamic Theory of Structure, Stability, and Fluctuations. Wiley, New York

    MATH  Google Scholar 

  24. beim Graben P. (2004) “Incompatible implementations of physical symbol systems”. Mind and Matter 2(2):29–52

    Google Scholar 

  25. Haken H. (1983) Synergetics. Springer, Berlin

    Google Scholar 

  26. Heisenberg W. (1930) The Physical Principles of the Quantum Theory. Dover, New York

    MATH  Google Scholar 

  27. Hempel C. (1965) Aspects of Scientific Explanation and Other Essays in the Philosophy of Science. The Free Press, New York

    Google Scholar 

  28. Hendry R. (1998) “Models and Approximations in Quantum Chemistry”. In: Shanks N. (eds) Idealization IX: Idealization in Contemporary Physics, Poznań Studies in the Philosophy of the Sciences and the Humanities 63. Rodopi, Amsterdam, pp. 123–142

    Google Scholar 

  29. Kaneko K., Tsuda I. (2000) Complex Systems: Chaos and Beyond. Springer, Berlin

    Google Scholar 

  30. Kemeny J.G., Oppenheim P. (1956) “On reduction”. Philos. Stud. 7, 6–19

    Article  Google Scholar 

  31. Kim J. (1993) Supervenience and Mind. Cambridge University Press, Cambridge

    Google Scholar 

  32. Kim J. (1998) Mind in a Physical World: An Essay on the Mind-Body Problem and Mental Causation. MIT Press, Cambridge, MA

    Google Scholar 

  33. Kim J. (1999) “Making sense of emergence”. Philos. Stud. 95, 3–36

    Article  Google Scholar 

  34. Lehn J.M. (2002) “Toward self-organization and complex matter”. Science 295:2400–2403

    Article  ADS  Google Scholar 

  35. Lind D., Marcus B. (1995) Symbolic Dynamics and Coding. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  36. Löwdin P.-O. (1969) “Some comments on the periodic system of elements”. Int. J. Quantum Chem. 3, 331–334

    Article  Google Scholar 

  37. Mainzer K. (1996) Symmetries of Nature. De Gruyter, Berlin

    Google Scholar 

  38. Mainzer K. (1997) “Symmetry and complexity: fundamental concepts of research in chemistry”. Hyle 3, 29–49

    Google Scholar 

  39. McLaughlin B. (1982) “British Emergentism”. In: Beckermann A. et al. (eds) Emergence or Reduction? Essays on the Prospects of Nonreductive Physicalism. De Gruyter, Berlin, pp. 49–93

    Google Scholar 

  40. Müller-Herold U. (1980) “Disjointness of β-kms states with different chemical potential”. Lett. Math. Phys. 4, 45–48

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Nagel E. (1961) The Structure of Science. Harcourt, Brace & World, New York

    Google Scholar 

  42. Nickles T. (1973) “Two concepts of intertheoretic reduction”. J. Philos. 70, 181–201

    Article  Google Scholar 

  43. Oppenheim P., Putnam H. (1958) “The unity of science as a working hypothesis”. In: Feigl H., Maxwell G., Scriven M. (eds) Minnesota Studies in the Philosophy of Science, Vol. 2. University of Minnesota Press, Minneapolis, pp. 3–35

    Google Scholar 

  44. Primas H. (1983) Chemistry, Quantum Mechanics and Reductionism. Springer, Berlin

    Google Scholar 

  45. Primas H. (1991) “Reductionism: palaver without Precedent”. In: Agazzi E. (eds) The Problems of Reductionism in Science. Kluwer Academic, Dordrecht, pp. 161–172

    Google Scholar 

  46. Primas H. (1998) “Emergence in exact natural sciences”. Acta Polytech. Scand. 91, 83–98

    MathSciNet  Google Scholar 

  47. Reichenbach H. (1978) “The aims and methods of physical knowledge”. In: Reichenbach M., Cohen R. (eds) Hans Reichenbach: Selected Writings 1909-1953. Reidel, Dordrecht, pp. 81–225

    Google Scholar 

  48. Ribó J., Crusats J., Sagués F., Claret J., Rubires R. (2001) “Chiral sign induction by vortices during the formation of mesophases in stirred solutions”. Science 292:2063–2066

    Article  Google Scholar 

  49. Scerri E. (1998) “How good is the quantum mechanical explanation of the periodic system?” J. Chem. Educ.75:1284–1285

    Article  Google Scholar 

  50. Scerri E. (1999) “A critique of Atkins’ periodic kingdom and some writings on electronic structure”. Found. Chem.1, 297–305

    Google Scholar 

  51. Schulman L.S., Gaveau B. (2001) “Coarse grains: the emergence of space and order”. Found. Phys.31, 713–731

    Article  MathSciNet  Google Scholar 

  52. Sewell G. (2002) Quantum Mechanics and Its Emergent Macrophysics. Princeton University Press, Princeton

    MATH  Google Scholar 

  53. Smith D., Babcock H., Chu S. (1999) “Single-polymer dynamics in steady shear flow”. Science 283:1724–1727

    Article  ADS  Google Scholar 

  54. Takesaki M. (1970) “Disjointness of the kms states of different temperatures”. Commun. Math. Phys. 17, 33–41

    Article  MathSciNet  ADS  Google Scholar 

  55. Takesaki M. (2002) Theory of Operator Algebras I. Springer, Berlin

    MATH  Google Scholar 

  56. Van Gulick R. (2001) “Reduction, emergence and other recent options on the mind/body problem”. J. Consciousness. Stud. 8, 1–34

    Google Scholar 

  57. Whitesides G., Grzybowski B. (2002) “Self-assembly at all scales”. Science 295:2418–2421

    Article  ADS  Google Scholar 

  58. Weiss S. (1999) “Fluorescence spectroscopy of single biomolecules”. Science 283:1676–1683

    Article  ADS  Google Scholar 

  59. Woolley R. (1976) “Quantum theory and molecular structure”. Adv. Phys. 25, 27–52

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Bishop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, R.C., Atmanspacher, H. Contextual Emergence in the Description of Properties. Found Phys 36, 1753–1777 (2006). https://doi.org/10.1007/s10701-006-9082-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9082-8

Keywords

Navigation