Skip to main content
Log in

Downward causation in fluid convection

  • Original Paper
  • Published:
Synthese Aims and scope Submit manuscript

The aim of science is not things themselves, as the dogmatists in their simplicity imagine, but the relations among things; outside these relations there is no reality knowable. – Poincaré

Abstract

Recent developments in nonlinear dynamics have found wide application in many areas of science from physics to neuroscience. Nonlinear phenomena such as feedback loops, inter-level relations, wholes constraining and modifying the behavior of their parts, and memory effects are interesting candidates for emergence and downward causation. Rayleigh–Bénard convection is an example of a nonlinear system that, I suggest, yields important insights for metaphysics and philosophy of science. In this paper I propose convection as a model for downward causation in classical mechanics, far more robust and less speculative than the examples typically provided in the philosophy of mind literature. Although the physics of Rayleigh–Bénard convection is quite complicated, this model provides a much more realistic and concrete example for examining various assumptions and arguments found in emergence and philosophy of mind debates. After reviewing some key concepts of nonlinear dynamics, complex systems and the basic physics of Rayleigh–Bénard convection, I begin that examination here by (1) assessing a recently proposed definition for emergence and downward causation, (2) discussing some typical objections to downward causation and (3) comparing this model with Sperry’s examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alder B., Wainwright T. (1970). Decay of the velocity autocorrelation function. Physical Review A, 1, 18–21

    Article  Google Scholar 

  • Auyang S. (1998). Foundations of complex-system theories: In economics, evolutionary biology, and statistical physics. Cambridge, Cambridge University Press

    Google Scholar 

  • Batchelor G. (1967). An introduction to fluid dynamics. Cambridge, Cambridge University Press

    Google Scholar 

  • Batterman R. (1993). Defining chaos. Philosophy of Science, 60, 43–66

    Article  Google Scholar 

  • Bishop R.C. (2004). Nonequilibrium statistical mechanics Brussels–Austin style. Studies in History and Philosophy of Modern Physics, 35, 1–30

    Article  Google Scholar 

  • Bishop R.C. (2006a). The hidden premise in the causal argument for physicalism. Analysis, 66, 44–52

    Article  Google Scholar 

  • Bishop, R. C. (2006b). Patching physics and chemistry together. Philosophy of Science, 72, forthcoming.

  • Bishop, R. C., & Atmanspacher, H. (2006). Contextual emergence in the description of properties. Foundations of Physics, 36 (in press).

  • Bishop R.C., Kronz F.K. (1999). Is chaos indeterministic?. In: Dalla Chiara M., Roberto G., Laudisa F. (eds) Language, quantum, music: Selected contributed papers of the tenth international congress of logic, methodology & philosophy of science, Florence, August 1995. London, Kluwer Academic Publishers, pp. 129–41

    Google Scholar 

  • Brand M. (1980). Simultaneous causation. In: van Inwagen P. (eds) Time and cause. Dordrecht, D. Reidel Publishing, pp. 137–153

    Google Scholar 

  • Busse F. (1978). Non-linear properties of thermal convection. Reports on Progress in Physics, 41:1929–1967

    Article  Google Scholar 

  • Cross M., Hohenberg P. (1993). Pattern formation outside of equilibrium. Reviews of Modern Physics, 65:851–1112

    Article  Google Scholar 

  • Crutchfield J. (1994). Observing complexity and the complexity of observation. In: Atmanspacher H., Dalenoort G. (eds) Inside versus outside. Berlin, Springer-Verlag, pp. 235–272

    Google Scholar 

  • Dirac P. (1949). Forms of relativistic dynamics. Reviews of Modern Physics, 21, 392–399

    Article  Google Scholar 

  • Earman J. (1986). A primer on determinism. Dordrecht, The Netherlands, D. Reidel Publishing

    Google Scholar 

  • Gillett C. (2002). The varieties of emergence: Their purposes, obligations and importance. Grazer Philosophische Studien, 65, 95–121

    Google Scholar 

  • Grassberger P. (1989). Problems in quantifying self-generated complexity. Helvetica Physica Acta, 62, 489–511

    Google Scholar 

  • Greenside H., Coughran W. Jr., Schryer N. (1982). Nonlinear pattern formation near the onset of Rayleigh–Bénard convection. Physical Review Letters, 49, 726–729

    Article  Google Scholar 

  • Guyon E., Hulin J.-P., Petit L., Mitescu C. (2001). Physical hydrodynamics. Oxford, Oxford University Press

    Google Scholar 

  • Hacking I. (1983). Representing and intervening: Introductory topics in the philosophy of science. Cambridge, Cambridge University Press

    Google Scholar 

  • Hacking I. (1984). Experimentation and scientific realism. In: Leplin J. (eds) Scientific realism. Berkeley, University of California Press, pp. 154–172

    Google Scholar 

  • Haken H. (1983a). Synergetics: An introduction, Third Revised and Enlarged Edition. Berlin, Springer-Verlag

    Google Scholar 

  • Haken H. (1983b). Advanced synergetics: Instability hierarchies of self-organizing systems and devices. Berlin, Springer-Verlag

    Google Scholar 

  • Huemer M., Kovitz B. (2003). Causation as simultaneous and continuous. The Philosophical Quarterly, 53, 556–565

    Article  Google Scholar 

  • Hill R. (1967). Instantaneous action-at-a-distance in classical relativistic mechanics. Journal of Mathematical Physics, 8, 201–220

    Article  Google Scholar 

  • Hobbs J. (1991). Chaos and indeterminism. Canadian Journal of Philosophy, 21, 141–164

    Google Scholar 

  • Juarrero A. (1999). Dynamics in action: Intentional behavior as a complex system. Cambridge, MA, MIT Press

    Google Scholar 

  • Kellert S. (1993). In the wake of chaos. Chicago, University of Chicago Press

    Google Scholar 

  • Kim J. (1993). Supervenience and mind. Cambridge, Cambridge University Press

    Google Scholar 

  • Kim J. (1998). Mind in a physical world: An essay on the mind–body problem and mental causation. Cambridge, MA, MIT Press

    Google Scholar 

  • Kim J. (1999). Making sense of emergence. Philosophical Studies, 95, 3–36

    Article  Google Scholar 

  • Kronz F. (1998). Nonseparability and quantum chaos. Philosophy of Science, 65, 50–75

    Article  Google Scholar 

  • Kronz F., Tiehen J. (2002). Emergence and quantum mechanics. Philosophy of Science, 6, 324–347

    Article  Google Scholar 

  • Le Van Quyen M. (1997a). Temporal patterns in human epileptic activity are modulated by perceptual discriminations. NeuroReport, 8:1703–1710

    Article  Google Scholar 

  • Le Van Quyen M. (1997b). Unstable periodic orbits in human epileptic activity. Physical Review E, 56:3401–3411

    Article  Google Scholar 

  • Malraison B., Atten P., Bergé P., Dubois M. (1983). Dimension of strange attractors: An experimental determination for the chaotic regime of two convective systems. Journal of Physics Letters, 44, 897–902

    Article  Google Scholar 

  • Mareschal M. (1997). Microscopic simulations of complex flows. Advances in Chemical Physics, 100, 317–392

    Article  Google Scholar 

  • McLaughlin B. (1982). British emergentism. In: Beckermann A., Flohr H., Kim J. (eds) Emergence or reduction? Essays on the prospects of nonreductive physicalism. Berlin, Walter de Gruyter, pp. 49–93

    Google Scholar 

  • Pathria R. (1972). Statistical mechanics. Oxford, Pergamon Press

    Google Scholar 

  • Pattee H. (1973). The physical basis and origin of hierarchical control. In: Pattee H. (eds) Hierarchy theory: The challenge of complex systems. New York, George Braziller, pp. 69–108

    Google Scholar 

  • Paul M., Chiam K.-H., Cross M., Greenside H. (2003). Pattern formation and dynamics in convection: Numerical simulations of experimentally realistic geometries. Physica D, 184, 114–126

    Article  Google Scholar 

  • Pomeau Y., Résibois P. (1975). Time dependent correlation functions and mode–mode coupling theories. Physics Reports, 19, 63–139

    Article  Google Scholar 

  • Primas H. (1983). Chemistry, quantum mechanics and reductionism: Perspectives in theoretical chemistry. Berlin, Springer-Verlag

    Google Scholar 

  • Scott A. (1999). Nonlinear science: Emergence & dynamics of coherent structures. Oxford, Oxford University Press

    Google Scholar 

  • Silberstein M., McGeever J. (1999). The search for ontological emergence. The Philosophical Quarterly, 49, 182–200

    Article  Google Scholar 

  • Smith P. (1998). Explaining chaos. Cambridge, Cambridge University Press

    Google Scholar 

  • Sperry R. (1969). A modified concept of consciousness. Psychological Review, 76, 532–536

    Article  Google Scholar 

  • Stone M. (1989). Chaos, prediction and laplacean determinism. American Philosophical Quarterly, 26, 123–131

    Google Scholar 

  • Taylor R. (1963). Causation. Monist, 47, 287–313

    Google Scholar 

  • Taylor R. (1966). Action and purpose. Englewood Cliffs, NJ, Prentice-Hall

    Google Scholar 

  • Teller P. (1986). Relational holism and quantum mechanics. British Journal for the Philosophy of Science, 37, 71–81

    Google Scholar 

  • Terry P. (2000). Suppression of turbulence and transport by sheared flow. Reviews of Modern Physics, 72, 109–165

    Article  Google Scholar 

  • Thompson E., Varela F. (2001). Radical embodiment: Neural dynamics and consciousness. TRENDS in Cognitive Science, 5, 418–425

    Article  Google Scholar 

  • Van Gulick R. (2001). Reduction, emergence and other recent options on the mind/body problem: A philosophic overview. Journal of Consciousness Studies, 8, 1–34

    Google Scholar 

  • Wackerbauer R., Witt A., Atmanspacher A., Kurths J., Scheingraber H. (1994). A comparative classification of complexity measures. Chaos, Solitons, Fractals, 4:133–173

    Article  Google Scholar 

  • Walter H. (2001). Neurophilosophy of Free Will: From libertarian illusions to a concept of natural autonomy, C Klohr (Trans.). Cambridge, MA, MIT Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Bishop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, R.C. Downward causation in fluid convection. Synthese 160, 229–248 (2008). https://doi.org/10.1007/s11229-006-9112-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-006-9112-2

Keywords

Navigation