Skip to main content
Log in

Spectral Spacing Correlations for Chaotic and Disordered Systems

Foundations of Physics Aims and scope Submit manuscript

Abstract

New aspects of spectral fluctuations of (quantum) chaotic and diffusive systems are considered, namely autocorrelations of the spacing between consecutive levels or spacing autocovariances. They can be viewed as a discretized two point correlation function. Their behavior results from two different contributions. One corresponds to (universal) random matrix eigenvalue fluctuations, the other to diffusive or chaotic characteristics of the corresponding classical motion. A closed formula expressing spacing autocovariances in terms of classical dynamical zeta functions, including the Perron–Frobenius operator, is derived. It leads to a simple interpretation in terms of classical resonances. The theory is applied to zeros of the Riemann zeta function. A striking correspondence between the associated classical dynamical zeta functions and the Riemann zeta itself is found. This induces a resurgence phenomenon where the lowest Riemann zeros appear replicated an infinite number of times as resonances and sub-resonances in the spacing autocovariances. The theoretical results are confirmed by existing “data.” The present work further extends the already well known semiclassical interpretation of properties of Riemann zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer Verlag, New York, 1990).

    Google Scholar 

  2. O. Bohigas, P. Lebœuf, and M. J. Sánchez, Physica D 131, 186 (1999).

    Google Scholar 

  3. M. V. Berry, in Quantum Chaos and Statistical Nuclear Physics, T. H. Seligman, and H. Nishioka, eds., Lectures Notes in Physics, Vol. 263 (Springer, Berlin, 1986), p. 1.

    Google Scholar 

  4. A. M. Odlyzko, Math. Comp. 48, 273 (1987); “The 1020th zero of the Riemann zeta function and 70 million of its neighbors,” AT & T Report, 1989 (unpublished); “The 1020th zero of the Riemann zeta function and 175 million of its neighbors,” AT 6 T Report, 1992 (unpublished).

    Google Scholar 

  5. O. Bohigas and M.-J. Giannoni, in Lecture Notes in Physics, Vol. 209 (Springer, Berlin, 1984), p.1.

    Google Scholar 

  6. P. Lebœuf and M. Sieber, Phys. Rev. E 60, 3969 (1999).

    Google Scholar 

  7. J. B. French, P. A. Mello, and A. Pandey, Ann. Phys. 113, 277 (1978). T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981). J. B. French, V. K. B. Kota, A. Pandey and S. Tomsovic, Ann. Phys. 181, 198 (1988). A. Pandey, unpublished (1982).

    Google Scholar 

  8. M. V. Berry, Nonlinearity 1, 399 (1988).

    Google Scholar 

  9. G. Montambaux, in Quantum Fluctuations, S. Reynaud, E. Giacobino, and J. Zinn-Justin, eds., Les Houches Session LXIII (North Holland, Amsterdam, 1997), p. 387.

    Google Scholar 

  10. M. L. Mehta, Random Matrices (Academic Press, New York, 1991), 2nd edn.

    Google Scholar 

  11. M. L. Mehta and F. J. Dyson, J. Math. Phys. 4, 713 (1963).

    Google Scholar 

  12. A. Pandey, in Ref. 3, p. 98.

  13. A. Altland and Y. Gefen, Phys. Rev. Lett. 71, 3339 (1993).

    Google Scholar 

  14. B. L. Altshuler and B. I. Shklovskii, Zh. Eksp. Teor. Fiz. 91, 220 (1986) [Sov. Phys. JETP 64, 127 (1986)].

    Google Scholar 

  15. K. Efetov, Adv. Phys. 32, 53 (1983).

    Google Scholar 

  16. J. Hannay and A. M. Ozorio de Almeida, J. Phys. A 17, 3429 (1984).

    Google Scholar 

  17. P. Cvitanović and B. Eckhardt, J. Phys. A 24, L237 (1991).

    Google Scholar 

  18. D. Ruelle, Statistical Mechanics, Thermodynamic Formalism (Addison-Wesley, Reading, MA, 1978). P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge Univer-sity Press, Cambridge, 1998).

    Google Scholar 

  19. O. Agam, B. L. Altshuler, and A. Andreev, Phys. Rev. Lett. 75, 4389 (1995).

    Google Scholar 

  20. M. V. Berry and J. Keating, SIAM Review 41, 236 (1999).

    Google Scholar 

  21. H. L. Montgomery, Proc. Symp. Pure Math. 24, 181 (1973). D. A. Goldston and H. L. Montgomery, Proceedings, Conference at Oklahoma State University, A. C. Adolphson et al., eds. (1984), p. 183.

    Google Scholar 

  22. N. M. Katz and P. Sarnak, Bull. Amer. Math. Soc. 36, 1 (1999).

    Google Scholar 

  23. E. C. Titchmarsh, The Theory of the Riemann Zeta Function (Clarendon, Oxford, 1986), 2nd edn.

    Google Scholar 

  24. E. Bogomolny and J. Keating, Phys. Rev. Lett. 77, 1472 (1996).

    Google Scholar 

  25. K. Pance, W. Lu, and S. Sridhar, Phys. Rev. Lett. 85, 2737 (2000).

    Google Scholar 

  26. O. Agam, Phys. Rev. E 61, 1285 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohigas, O., Lebœuf, P. & Sánchez, M.J. Spectral Spacing Correlations for Chaotic and Disordered Systems. Foundations of Physics 31, 489–517 (2001). https://doi.org/10.1023/A:1017569612944

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017569612944

Keywords

Navigation