Skip to main content
Log in

Theories of Space-Time in Modern Physics

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The physicist's conception of space-time underwent two major upheavals thanks to the general theory of relativity and quantum mechanics. Both theories play a fundamental role in describing the same natural world, although at different scales. However, the inconsistency between them emerged clearly as the limitation of twentieth-century physics, so a more complete description of nature must encompass general relativity and quantum mechanics as well. The problem is a theorists' problem par excellence. Experiment provide little guide, and the inconsistency mentioned above is an important problem which clearly illustrates the intermingling of philosophical, mathematical, and physical thought. In fact, in order to unify general relativity with quantum field theory, it seems necessary to invent a new mathematical framework which will generalise Riemannian geometry and therefore our present conception of space and space-time. Contemporary developments in theoretical physics suggest that another revolution may be in progress, through which a new kind of geometry may enter physics, and space-time itself can be reinterpreted as an approximate, derived concept. The main purpose of this article is to show the great significance of space-time geometry in predetermining the laws which are supposed to govern the behaviour of matter, and further to support the thesis that matter itself can be built from geometry, in the sense that particles of matter as well as the other forces of nature emerges in the same way that gravity emerges from geometry.

Scientific research is not a process of steady accumulation of absolute truths, which has culminated in present theories, but rather a much more dynamic kind of process in which there are no final theoretical concepts valid in unlimited domains. (David Bohm)

The more we understand about the physical world, and deeper we probe into the laws of nature, the more we are driven into the world of mathematics and of mathematical concepts. (Roger Penrose)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

Basic References

  • Arnold, V.: 1978, Mathematical Methods of Classical Mechanics, Springer, New York.

    Google Scholar 

  • Christoffel, E. B.: 1869, ‘Ueber die Transformation der homogenen Differential-Ausdrücke zweiten Grades', Journal für die reine und angewandte Mathematik 70, 46–70.

    Google Scholar 

  • Clifford, W. K.: 1876, ‘On the Space-Theory of Matter', Cambridge Philosophical Society Proceedings 2, 157–158.

    Google Scholar 

  • Einstein, A.: 1916, ‘Die Grundlagen der allgemeinen Relativitätstheorie', Annalen der Physik 49, 769–822.

    Google Scholar 

  • Einstein, A. and L. Infeld: 1938, The Evolution of Physics, Simon and Schuster, New York.

    Google Scholar 

  • Feynman, R.: 1967, The Character of Physical Laws, The MIT Press, Cambridge, MA.

    Google Scholar 

  • Gauss, C. F.: 1827, ‘Disquisitiones generales circa superficies curvas', Comm. Soc. Reg. Sci. Gott. Cl. Math. 6, 99–146.

    Google Scholar 

  • Lindsay, R. B. and H. Margenau: 1957, Foundations of Physics, Dover, New York.

    Google Scholar 

  • Lorentz, H.A., A. Einstein, H. Minkowski, and H. Weyl: 1923, The Principle of Relativity, A collection of Originals Memoirs on the Special and General Theory of Relativity, W. Perrett and G. B. Jeffery (trans.), Methuen, London.

  • Mach, E.: 1883, Die Machanik in ihrer Entwicklung, Historisch-kritisch dargestellt, Brockhaus, Leipzig.

    Google Scholar 

  • Poincaré, H.: 1902, La Science et l'Hypothèse, Paris: Flammarion.

    Google Scholar 

  • Ricci, G. and T. Levi-Civita: 1901, ‘Méthodes de calcul différentiel absolu et leurs applications', Mathematische Annalen 54, 125–201.

    Google Scholar 

  • Riemann, B.: 1867, ‘Ñber die Hypothesen, welche der Geometrie zu Grunde liegen', Abh. K. Gesell. Wiss. Gött. 13, 133–152.

    Google Scholar 

  • Schilpp, P. A., ed.: 1949, Albert Einstein: Philosopher-Scientist, The Library of Living Philosophers, Evanston, IL.

    Google Scholar 

  • Weyl, H.: 1949, Philosophy of Mathematics and Natural Science, Princeton University Press, Princeton.

    Google Scholar 

References on Special Relativity, Lorentz (Poincaré) Group and Minkowski Space-time

  • Bergman, P. G.: 1942, Introduction to the Theory of Relativity, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Bohm, D.: 1965, The Special Theory of Relativity, W.A. Benjamin, New York.

    Google Scholar 

  • Einstein, A.: 1905, ‘Zur Elektrodynamik bewgter Körper', Ann. der Physik 17, 891–921.

    Google Scholar 

  • Helfer, A. D.: 1993, ‘The Kinematics of the Gravitational Field', in R. Greene and S.-T. Yau (eds.), Differential Geometry: Geometry in Mathematical Physics and Related Topics, (Proceedings of Symposia in Pure Mathematics, Vol. 2, Part 2), American Mathematical Society, Providence, Rhode Island, pp. 297–316.

    Google Scholar 

  • Holton, G.: 1960, ‘On the Origins of the Special Theory of Relativity', American Journal of Physics 28, 627–636.

    Google Scholar 

  • Lanczos, C.: 1965, Albert Einstein and Cosmic World Order, Wiley, New York.

    Google Scholar 

  • Lorentz, H. A.: 1905, Versuch einer Theorie der electrischen und optischen Erscheinungen in bewgten Körpern, Brill, Leiden.

    Google Scholar 

  • Minkowski, H.: 1909, ‘Raum und Zeit', Physikalische Zeitschrift 10, 104–111.

    Google Scholar 

  • Poincaré, H.: 1906, ‘Sur la dynamique de l'électron', Rendiconti del Circolo Matematico di Palermo 21, 129–175.

    Google Scholar 

  • Rindler, W.: 1960, Special Relativity, Oliver & Boyd, Edinburgh.

    Google Scholar 

  • Schouten, J. A.: 1954, Ricci Calculus, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Synge, J. L.: 1955, Relativity: The Special Theory, North-Holland, Amsterdam.

    Google Scholar 

  • Zeeman, E. C.: 1967, ‘The Topology of Minkowski Space', Topology 6, 161–170.

    Google Scholar 

References on General Relativity, Riemannian Geometry and Topology

  • Adler, R., M. Bazin, and M. Schiffer: 1965, Introduction to General Relativity, McGraw-Hill, San Francisco.

    Google Scholar 

  • Arnowitt, R., S. Deser, and C. W. Misner: 1962, ‘The Dynamics of General Relativity', in L. Witten (ed.), Gravitation: An Introduction to Current Research, Wiley, New York, pp. 227–265.

    Google Scholar 

  • Audretsch, J.: 1994, ‘Ist die Raum-Zeit gekrümt? Der Aufbau der modernen Gravitationstheorie', in J. Audretsch and K. Meinzer (eds.), Philosophie und Physik der Raum-Zeit, Bibliographisches Institut-Wissenschaftsverlag, Zürich, pp. 52–82.

    Google Scholar 

  • Burke, W. L.: 1980, Space-time, Geometry, Cosmology, University Science Books, Mill Valley, Calif.

    Google Scholar 

  • Cartan, E.: 1923, ‘Sur les variétés à connexion affine et la théorie de la relativité généralisée', Annales de l'École Normale Supérieure 40, 325–412.

    Google Scholar 

  • Chern, S. S.: 1951, Topics in Differential Geometry, Institute for Advanced Study, Princeton.

    Google Scholar 

  • Chiu, H.-Y. and W. F. Hoffmann (eds.): 1964, Gravitation and Relativity, Benjamin, New York.

    Google Scholar 

  • Choquet-Bruhat, Y. and Y. C. DeWitt-Morette: 1982, Analysis, Manifolds and Physics, North-Holland, Amsterdam.

    Google Scholar 

  • Ciufolini, I. and J. A. Wheeler: 1995, Gravitation and Inertia, Princeton University Press, Princeton NJ.

    Google Scholar 

  • Clarke, C. and F. de Felice: 1990, Relativity on Curved Manifolds, Cambridge University Press, Cambridge.

    Google Scholar 

  • Cohen-Tannoudji, G. and M. Spiro: 1986, La matière-espace-temps, Fayard, Paris.

    Google Scholar 

  • Damour, Th.: 1995, ‘General Relativity and Experiment', in D. Iagolnitzer (ed.), Proc. of the XIth International Congress of Mathematical Physics, International Press, Boston, pp. 37–46.

    Google Scholar 

  • Eddington, A.: 1924, The Mathematical Theory of Relativity, Cambridge University Press, Cambridge.

    Google Scholar 

  • Ehlers, J., F. A. E. Pirani, and A. Schild: 1972, ‘The Geometry of Free Fall and Light Propagation', in L. O'Raifeartaigh (ed.), General Relativity. Papers in honour of J. L. Synge, Clarendon Press, Oxford, pp. 63–84.

    Google Scholar 

  • Ehlers, J.: 1973, ‘The Nature and Structure of Space-time', in J. Mehra (ed.), The Physicist's Conception of Nature, Reidel, Dordrecht, pp. 71–91.

    Google Scholar 

  • Ehlers, J.: 1973, ‘Survey of General Relativity Theory', in W. Israel (ed.), Relativity, Astrophysics and Cosmology, Reidel, Dordrecht, pp. 1–125.

    Google Scholar 

  • Einstein, A.: 1921, Geometrie und Erfahrung. Erweiterte Fassung eines Festvortrages, Springer-Verlag, Berlin.

    Google Scholar 

  • Einstein, A.: 1956, The Meaning of Relativity, Princeton University Press, Princeton.

    Google Scholar 

  • Ellis, G. F. R. and D. W. Sciama: 1972, ‘Global and Non Global Problems in Cosmology', in L. O'Raifeartaigh (ed.), General Relativity, Oxford University Press, Oxford.

    Google Scholar 

  • Ellis, G. F. R. and R. M. Williams: 1988, Flat and Curved Space-Times, Clarendon Press, Oxford.

    Google Scholar 

  • Fock, V.: 1959, The Theory of Space, Time and Gravitation, Pergamon Press, London.

    Google Scholar 

  • Geroch, R. P. and G. T. Horowitz: 1979, ‘Global Structures of Space-Times', in S. W. Hawking and W. Israel (eds.), General Relativity. An Einstein centenary survey, Cambridge University Press, Cambridge, pp. 212–293.

    Google Scholar 

  • Hawking, S. W. and G. F. R. Ellis: 1973, The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hehl. F. W., J. Nitsch, and P. Von der Heyde: 1980, ‘Gravitation and the Poincaré Gauge Field Theory with Quadratic Lagrangian', in A. Held (ed.), General Relativity and Gravitation. One Hundred Years after the Birth of Albert Einstein. Vol. 1, Plenum Press, New York, pp. 329–355.

    Google Scholar 

  • Kobayashi, S. and K. Nomizu: 1962, Foundations of Differential Geometry, Wiley, New York (2 vols.)

    Google Scholar 

  • Lachièze-Rey, M. and J.-P. Luminet: 1995, ‘Cosmic Topology', Physics Reports 254, 135–214.

    Google Scholar 

  • Lichnerowicz, A.: 1955, Théories relativistes de la gravitation et de l'électromagnétisme, Masson, Paris.

    Google Scholar 

  • Misner, C. W., K. S. Thorne, and J. A. Wheeler: 1973, Gravitation, Freeman, San Francisco.

    Google Scholar 

  • de Oliveira-Costa A. and G. F. Smoot: 1995, ‘Does COBE Rule Out a Toroidal Universe?’, Nuclear Physics B (Proc. Suppl.) 43, 299–302.

    Google Scholar 

  • Pauli, W.: 1981, Theory of Relativity, Dover, New York. (The first edition was published in German in 1921.)

    Google Scholar 

  • Penrose, R.: 1967, ‘Structure of Space-Time', in C. M. DeWitt and J. A. Wheeler (eds.), Battelle Rencontres. Lectures in Mathematics and Physics, Benjamin, New York, pp. 121–235.

    Google Scholar 

  • Penrose, R.: 1982, ‘Some Unsolved Problems in Classical General Relativity', in S.-T. Yau (ed.), Seminar on Differential Geometry, Princeton University Press, Princeton, pp. 631–668.

    Google Scholar 

  • Regge, T.: 1961, ‘General Relativity Without Coordinates', Rivista del Nuovo Cimento 19, 558–571.

    Google Scholar 

  • Rindler, W.: 1977, Essential Relativity: Special, General, and Cosmological, Springer-Verlag, New York.

    Google Scholar 

  • Schoen, R. and S. T. Yau: 1979, ‘On the Proof of the Positive Mass Conjecture in General Relativity', Commun. Math. Phys. 65, 45–76.

    Google Scholar 

  • Schrödinger, E.: 1954, Space-Time Structure, Cambridge University Press, Cambridge.

    Google Scholar 

  • Souriau, J.-M.: 1964, Géométrie et Relativité, Hermann, Paris.

    Google Scholar 

  • Spivak, M.: 1979, A Comprehensive Introduction to Differential Geometry, Publish or Perish, Berkeley (5 vols.)

  • Thorne, K.: 1994, Black Holes and Time Warps, W. W. Norton, New York and London.

    Google Scholar 

  • Trautman, A., F. A. E. Pirani, and H. Bondi: 1965, Lectures on General Relativity, Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Trautman, A.: 1973, ‘Theory of Gravitation', in J. Mehra (ed.), The Physicist's Conception of Nature, Reidel, Dordrecht, pp. 179–201.

    Google Scholar 

  • Wald, R. M.: 1984, General Relativity, University of Chicago Press, Chicago.

    Google Scholar 

  • Weinberg, S.: 1973, Gravitation and Cosmology. Principles and Applications of the General Theory of Relativity, Wiley, New York.

    Google Scholar 

  • Weyl, H.: 1919, ‘Eine neue Erweiterung der Relativitätstheorie', Annalen der Physik (4) 59, 101–133.

    Google Scholar 

  • Weyl, H.: 1950, Space-Time-Matter, transl. by H. L. Brose, Dover, New York. (This is a translation from the german edition of 1921.)

  • Wheeler, J. A.: 1962, Geometrodynamics, Academic Press, New York and London.

    Google Scholar 

References on Dynamical and Geometrical Symmetries

  • Coleman, S.: 1985, Aspects of Symmetry, Cambridge University Press, Cambridge.

    Google Scholar 

  • Fröhlich, J.: 1992, ‘Spontaneously Broken and Dynamically Enhanced Global and Local Symmetries', in Non-Perturbative Quantum Field Theory (Selected Papers of Jürg Fröhlich), World Scientific, London, pp. 193–212.

    Google Scholar 

  • Fuchs, J. and Ch. Schweigert: 1997, Symmetries, Lie Algebras and Representations, Cambridge University Press, Cambridge.

    Google Scholar 

  • Goldstone, J., A. Salam, and S. Weinberg: 1962, ‘Broken Symmetries', Physical Review 127, 965–970.

    Google Scholar 

  • Gross, J. D.: 1995, ‘Symmetry in Physics: Wigner's Legacy', Physics Today, December, 46–50.

  • Haag, R.: 1965, ‘Lorentz Invariance and Breaking of Lorentz Invariance in Quantum Theory', in W. E. Brittin and A. O. Barut (eds.), Lectures in Theoretical Physics. Vol. III: Lorentz Group, The University of Colorado Press, Bulder, pp. 107–116.

    Google Scholar 

  • Iliopoulos, J.: 1980, ‘Unified Theories of Elementary Particle Interactions', Contemporay Physics 21(2), 159–183.

    Google Scholar 

  • Itzykson, C.: 1989, ‘Symétries, géométrie et théories de jauge', in Encyclopédie Philosophique Universelle, I: L'Univers Philosophique, sous la dir. d'André Jacob, Presses Universitaires de France, Paris, pp. 1143–1146.

    Google Scholar 

  • Kibble, T. W. B.: 1967, ‘Symmetrybraking in non-Abelian Gauge Theories', Physical Review 155, 1554–1561.

    Google Scholar 

  • Nambu, Y.: 1965, ‘Dynamical Symmetries and Fundamental Fields', in B. Kursunoglu, A. Pelmutter, and A. Sakmar (eds.), Symmetry Principles at High Energies, Freeman, San Francisco and London, pp. 274–285.

    Google Scholar 

  • Noether, E.: 1918, ‘Invariante Variations Probleme', Nachr. König. Gesell. Wissen. Göttingen, Math.-Phys. Kl., pp. 235–257.

  • Sakurai, J. J.: 1960, ‘Symmetry Laws and Elementary Particles Interactions', in W. E. Brittin and B.W. Downs (eds.), Lectures in Theoretical Physics, Interscience, New York, pp. 31–209.

    Google Scholar 

  • Salam, A.: 1990, Unification of fundamental forces, Cambridge University Press, Cambridge.

    Google Scholar 

  • 't Hooft, G.: 1980, ‘Gauge Theories of the Forces between Elementary Particles', Scientific American 125(4), 104–136.

    Google Scholar 

  • Weyl, H.: 1931, The Theory of Groups and Quantum Mechanics, Princeton University Press, Princeton.

    Google Scholar 

  • Wigner, E. P.: 1939, ‘The Unitary Representation of the Inhomogeneous Lorentz Group', Annals of Mathematics 40, 149–187.

    Google Scholar 

  • Wigner, E. P.: 1967, Symmetries and Reflections, Indiana University Press, Bloomington & London.

    Google Scholar 

  • Yang, C. N.: 1983, ‘Symmetry Principles in Modern Physics', in C. N. Yang, Selected papers, W. H. Freeman, San Francisco, pp. 267–280.

    Google Scholar 

References on Further Developments of Space-time Theories in Theoretical Physics

  • Ashetekar, A.: 1998, ‘Geometric Issues in Quantum Gravity', in S. A. Hugget et al. (eds.), The Geometric Universe. Science, Geometry, and the Work of Roger Penrose, Oxford University Press, Oxford, pp. 172–194.

    Google Scholar 

  • Atiyah, M. F.: 1979, Geometry of Yang-Mills Fields, Academia Nazionale dei Lincei, Scuola Normale Superiore, Pisa.

    Google Scholar 

  • Baez, J. and J. P. Muniain: 1994, Gauge Fields, Knots and Gravity, World Scientific, Singapore.

    Google Scholar 

  • Bourguignon, J. P. and H. B. Lawson: 1982, ‘Yang-Mills Theory: its Physical Origins and Differential Geometric Aspects', in S.-T. Yau (ed.), Seminar on Differential Geometry, Princeton University Press, Princeton, pp. 395–421.

    Google Scholar 

  • Connes, A.: 1994, Noncommutative geometry, Academic Press, London and New York.

    Google Scholar 

  • Dirac, P.: 1930, The Principles of Quantum Mechanics, Clarendon Press, Oxford.

    Google Scholar 

  • Donaldson, S. K.: 1983, ‘An Application of Gauge Theory to the Topology of Four Manifolds', Journal of Differential Geometry 18, 269–287.

    Google Scholar 

  • Gross, D.: 1989, ‘Strings and Unification', in Z. Ajduk, S. Pokorski and A. Trautman (eds.), New Theories of Physics (Proceedings of the XI Warsaw Symposium on Elementary Particle Physics), World Scientific, Singapore, pp. 307–333.

    Google Scholar 

  • Feynman, R. P.: 1949, ‘The Space-Time Approach to Quantum Electrodynamics', Physical Review 76, 769–789.

    Google Scholar 

  • Isham, C. J.: 1984, ‘Topological and Global Aspects of Quantum Field Theory', in B. S. DeWitt and R. Stora (eds.), Relativity, Groups and Topology II, North-Holland, Les Houches, Amsterdam, pp. 1059–1290.

    Google Scholar 

  • Manin, Yu I.: 1988, Gauge Field Theory and Complex Geometry, Springer-Verlag, Berlin and Heidelberg.

    Google Scholar 

  • Nieuwenhuizen, P. van: 1984, ‘An Introduction to Simple Supergravity and the Kaluza-Klein Program', in B. S. DeWitt and R. Stora (eds.), Relativity, Groups and Topology II North-Holland, (Les Houches), Amsterdam, pp. 823–932.

    Google Scholar 

  • Penrose, R.: 1977, ‘The Twistor Programme', Reports in Mathem. Physics 12, 65–76.

    Google Scholar 

  • Rovelli, C.: 1995, ‘Outline of a Generally Covariant Quantum Field Theory and a Quantum Theory of Gravity', Journal of Mathematical Physics 36(11), 6529–6547.

    Google Scholar 

  • Veneziano, G.: 1989, ‘Quantum Strings and the Constants of Nature', in A. Zichichi (ed.), The Challenging Questions, Plenum Press, New York.

    Google Scholar 

  • Witten, E.: 1987, ‘Physics and Geometry', in Proceedings of the International Congress of Mathematicians, American Mathematical Society, Berkeley, pp. 267–303.

    Google Scholar 

  • Witten, E.: 1989, ‘Qunatum Field Theory and the Jones polynomial', Commun. Math. Phys. 121, 351–399.

    Google Scholar 

  • Yang, C. N. and R. L. Mills: 1954, ‘Conservation of Isotopic Spin and Isotopic Gauge Invariance', Phyisical Review 96(1), 191–195.

    Google Scholar 

References on the Philosophical, Historical and Foundational Aspects of Space-time Theories

  • Bailly, F.: 1999, ‘A propos de l'espace et du temps dans les sciences de la nature', unpublished manuscript, 27 p.

  • Barbour, J. B.: 1982, ‘Relational Concepts of Space and Time', The British Journal for the Philosophy of Science 33, 251–274.

    Google Scholar 

  • Boi, L.: 1995, Le problème mathématique de l'espace. Une quête de l'intelligible, Springer-Verlag, Berlin and Heidelberg.

    Google Scholar 

  • Boi, L.: 1999, ‘Some Mathematical, Epistemological and Historical Reflections on the Relationship Between Geometry and Reality, Space-time Theory and the Geometrization of Theoretical Physics, from B. Riemann to H. Weyl and Beyond', Cahiers du C.A.M.S. (EHESS, Paris), 176, 1–41.

    Google Scholar 

  • Boi, L.: 1999, ‘Geometrical and Topological Foundations of Theoretical Physics: From Gauge Theories to String Program', Foundations of Physics (to appear).

  • Boi, L.: 2000, ‘Géométrie de l'espace-temps et nature de la physique: quelques réflexions historiques et épistémologiques', Manuscrito 23(1), 31–97.

    Google Scholar 

  • Bouquet, A.: 1993, ‘L'unification des interactions fondamentales', in Encyclopaedia Universalis, Paris, Les Enjeux I, pp. 654–663.

    Google Scholar 

  • Bunge, M.: 1967, Foundations of Physics, Springer-Verlag, Berlin.

    Google Scholar 

  • Cao, T. Yu: 1997, Conceptual Developments of 20th Century Field Theories, Cambridge University Press, Cambridge.

    Google Scholar 

  • Cassirer, E.: 1923, Substance and function and Einstein's Theory of relativity, Open Court, Chicago.

    Google Scholar 

  • Coleman, R. A. and H. Korté: 1995, ‘A New Semantics for the Epistemology of Geometry. I: Modeling Space-time Structure', Erkenntnis 42(2), 141–160. (Special Issue on Re-flections on Space-time: Foundations, Philosophy, History, U. Majer and H.-J. Schmidt (eds.).)

    Google Scholar 

  • Davis, P. C. W.: 1977, Space and time in the moderne universe, Cambridge University Press, Cambridge.

    Google Scholar 

  • Earman, J., C. Glymour, and J. Stachel (eds.): 1977, Foundations of Space-Time Theories, University of Minnesota Press, Minneapolis.

    Google Scholar 

  • Friedman, M.: 1983, Foundations of Space-Time Theories: Relativistic Physics and the Philosophy of Science, Princeton University Press, Princeton.

    Google Scholar 

  • Gödel, K.: 1949, ‘A Remark About the Relationship Between Relativity Theory and Idealistic Philosophy', in P. A. Schilpp (ed.), Albert Einstein: Philosopher-Scientist, The Library of Living Philosophers, Evanston, Ill, pp. 557–562.

    Google Scholar 

  • Goenner, H. F.: 1970, ‘Mach's Principle and Einstein's Theory of Gravitation', in R. S. Cohen and R. J. Seeger (eds.), Ernst Mach: Physicist and Philosopher, Reidel, Dordrecht, pp. 200–215.

    Google Scholar 

  • Graves, J. C.: 1971, The Conceptual Foundations of Contemporary Relativity Theory, The MIT Press, Cambridge, Mass.

    Google Scholar 

  • Grünbaum, A.: 1973, Philosophical Problems of Space and Time, second, enlarged edition. Reidel, Dordrecht.

    Google Scholar 

  • Kanitscheider, B.: 1972, ‘Die Rolle der Geometrie innerhalb physikalischer Theorien', Zeitschrift für Philosophische Forschung 26, 42–55.

    Google Scholar 

  • Kerszberg, P.: 1989, The Invented Universe, Pergamon Press, Oxford.

    Google Scholar 

  • Lambert, D.: 1998, ‘Symetries formelles, mathématiques profondes et réalité', unpublished manuscript, 18 p.

  • Lochak, G.: 1994, La géométrisation de la physique, Flammarion, Paris.

    Google Scholar 

  • Mainzer, K.: 1994, ‘Philosophie und Geschichte von Raum und Zeit', in J. Ausdretsch and K. Mainzer (eds.), Philosophie und Physik der Raum-Zeit, Bibliographische Institut-Wissenschaftsverlag, Zürich, pp. 11–51.

    Google Scholar 

  • Malamet, D.: 1997, ‘Causal Theories of Time and the Conventionality of Simultaneity', Noûs 11, 293–300.

    Google Scholar 

  • Mehra, J.: 1974, Einstein, Hilbert and the Theory of Gravitation. Historical Origins of General Relativity Theory, Reidel, Dordrecht.

    Google Scholar 

  • Mizony, M.: 1998, ‘Que peut nous apprendre la gravitation sur l'espace-temps', Publications de l'Institut de Mathématiques G. Desargues (Université Lyon I) 12, 1–15.

    Google Scholar 

  • Münster, G.: 1990, ‘Epistemologische Aspekte der neuen Entwicklungen in der Physik', Philosophia naturalis 27(1), 112–136.

    Google Scholar 

  • Nelkowski, H. et al. (eds.): 1979, Einstein Symposion Berlin aus Anlass der 100. Wiederkehr seines Geburtstages, Springer-Verlag, Berlin. (Lecture Notes in Physics, Vol. 100.)

    Google Scholar 

  • Nottale, L.: 1998, La relativité dans tous ses états, Hachette, Paris.

    Google Scholar 

  • Paty, M.: 1993, Einstein Philosophe, Presses Universitaires de France, Paris.

    Google Scholar 

  • Penrose, R.: 1997, The Large, the Small and the Human Mind, Cambridge University Press, Cambridge.

    Google Scholar 

  • Petitot, J.: 1992, ‘Actuality of Transcendental Aesthetics for Modern Physics', in L. Boi et al. (eds.), A Century of Geometry. Epistemology, History and Mathematics, Springer-Verlag, Heidelberg, pp. 239–263.

    Google Scholar 

  • Schlick, M.: 1920, Raum und Zeit in der gegenwärtigen Physik, Springer, Berlin.

    Google Scholar 

  • Stachel, J.: 1995, ‘History of Relativity', in L. M. Brown, A. Pais and Sir B. Pippard (eds.), Twentieth Century Physics, Vol. I, Institute of Physics Publ., Bristol, pp. 249–356.

    Google Scholar 

  • Stamatescu, I.-O.: 1994, ‘Quantum Field Theory and the Structure of Space-Time', in I.-O. Stamatescu (ed.), Philosophy, Mathematics and Modern Physics, Springer-Verlag, Heidelberg, pp. 67–91.

    Google Scholar 

  • Reichenbach, H.: 1958, The Philosophy of Space and Time, transl. by M. Reichenabch and J. Freund, Dover, New York. (The first german edition was published in 1928.)

  • Tonnelat, M.-A.: 1971, Histoire du Principe de Relativité, Flammarion, Paris.

    Google Scholar 

  • Torretti, R.: 1996), Relativity and Geometry, Dover, New York (the book was first published in 1983 by Pergamon Press, Oxford.)

    Google Scholar 

  • Van Frassen, B. C.: 1969, ‘Conventionality in the Axiomatic Foundations of the Special Theory of Relativity', Philosophy of Science 36, 64–73.

    Google Scholar 

  • Weizsäcker, C. F. von: 1973, ‘Classical and Quantum Descriptions', in J. Mehra (ed.), The Physicist's Conception of Nature, Reidel, Dordrecht, pp. 635–667.

    Google Scholar 

  • Zahar, E.: 1989, Einstein's Revolution: A Study in Heuristic, Open Court, La Salle.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boi, L. Theories of Space-Time in Modern Physics. Synthese 139, 429–489 (2004). https://doi.org/10.1023/B:SYNT.0000024888.19304.0f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SYNT.0000024888.19304.0f

Keywords

Navigation