Skip to main content
Log in

Local and Non-Local Aspects of Quantum Gravity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The analysis of the measurement of gravitational fields leads to the Rosenfeld inequalities. They say that, as an implication of the equivalence of the inertial and passive gravitational masses of the test body, the metric cannot be attributed to an operator that is defined in the frame of a local canonical quantum field theory. This is true for any theory containing a metric, independently of the geometric framework under consideration and the way one introduces the metric in it. Thus, to establish a local quantum field theory of gravity one has to transit to non-Riemann geometry that contains (beside or instead of the metric) other geometric quantities. From this view, we discuss a Riemann–Cartan and an affine model of gravity and show them to be promising candidates of a theory of canonical quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Rosenfeld, “Quanten und Gravitation,” in Entstehung, Entwicklung und Perspektiven der Einsteinschen Gravitationstheorie, H.-J. Treder, ed. (Akademie-Verlag, Berlin, 1966).

    Google Scholar 

  2. H.-H. v. Borzeszkowski and H.-J. Treder, The Meaning of Quantum Gravity (Reidel, Dordrecht, 1988).

    Google Scholar 

  3. H.-H. v. Borzeszkowski, “The Concept of Gravitons and the Measurement of Effects of Quantum Gravity,” in Quantum Gravity, Proceedings of the Third Seminar on Quantum Gravity, Moscow 1984, M. A. Markov, V. A. Berezin, and V. P. Frolov, eds. (World Scientific, Singapore, 1985).

    Google Scholar 

  4. N. Bohr and L. Rosenfeld, “Zur Frage der Meßbarkeit der elektromagnetischen Feldgrößen,” Dan. Vid. Selskab. Mat-fys. 12 (1933) No. 8. [English translation: “On the Question of the Measurability of Electromagnetic Field Quantities,” in Niels Bohr, Collected Works, Vol. 7, J. Kalckar, ed. (North-Holland, Amsterdam, 1996)].

  5. P. A. M. Dirac, Proc. Roy. Soc. London A 167, 148 (1938).

    Google Scholar 

  6. A. O. Barut, “Nonlinear Problems in Classical and Quantum Electrodynamics,” in Nonlinear Problems in Theoretical Physics, A. F. Ranada, ed. (Springer, Berlin, 1979).

    Google Scholar 

  7. W. Pauli, “Letter to Heisenberg (18 January, 1933),” in Wolfgang Pauli, Correspondence with Bohr, Heisenberg a. o., Vol. II (1930-1933), K. v. Meyenn, ed. (Springer, Berlin, 1985).

    Google Scholar 

  8. D.-E. Liebscher, Ann. Physik (Leipzig) 30, 309, 321 (1973).

    Google Scholar 

  9. H.-H. v. Borzeszkowski and H.-J. Treder, Ann. Phys. (Leipzig) 46, 315 (1989).

    Google Scholar 

  10. H.-H. v. Borzeszkowski, V. de Sabbata, C. Sivaram, and H.-J. Treder, Found. Phys. Lett. 11, 157 (1996).

    Google Scholar 

  11. C. Rovelli and L. Smolin, Nucl. Phys. B 442, 593 (1995), Erratum, Nucl. Phys. B 456, 734 (1995).

    Google Scholar 

  12. A. Ashtekar and J. Lewandoski, Class. Quantum Grav. 14, A55 (1997); Adv. Theor. Math. Phys. 1, 388 (1997).

    Google Scholar 

  13. T. Thiemann, Class. Quantum Grav. 15, 1463 (1998); gr-qc/9705020.

    Google Scholar 

  14. T. Thiemann, “Introduction to Modern Canonical Quantum General Relativity,” Preprint AEI-2001-199, gr-qc/0110034.

  15. V. de Sabbata, Nuovo Cimento 107A, 363 (1994).

    Google Scholar 

  16. V. de Sabbata and L. Ronchetti, Found. Phys. 29, 1099 (1999).

    Google Scholar 

  17. V. de Sabbata, L. Ronchetti, and Alfred Yu, “Torsion and Curvature as Commutator for Quantum Gravity,” in Advances in the Interplay between Quantum and Gravity Physics, P. G. Bergmann and V. de Sabbata, eds. (Kluwer Academic, Dordrecht, 2002), pp. 85–102.

    Google Scholar 

  18. F. W. Hehl, D. McCrea, E. W. Mielke, and Y. Nee'man, “Metric-affine theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance,” Phys. Rep. 258, 1–171 (1995).

    Google Scholar 

  19. B. K. Datta, V. de Sabbata, and L. Ronchetti, Nuovo Cimento 113B, 711 (1998).

    Google Scholar 

  20. H. Euler and B. Kockel, Naturwiss. 23, 246 (1935). H. Euler, Ann. Phys. (Leipzig) 26, 298 (1936). W. Heisenberg and H. Euler, Z. Phys. 98, 740 (1936).

    Google Scholar 

  21. H.-H. v. Borzeszkowski and H.-J. Treder, Gen. Rel. Grav. 33, 1351 (2001).

    Google Scholar 

  22. H.-H. v. Borzeszkowski and H.-J. Treder, “Canonical Gravity and Mach's Principle: Kinematic and Dynamic Solutions of the Space Problem,” in Advances in the Interplay between Quantum and Gravity Physics, P. G. Bergmann and V. de Sabbata, eds. (Kluwer Academic, Dordrecht, 2002), pp. 57–76.

    Google Scholar 

  23. A. Einstein, “Zur allgemeinen Relativitätstheorie,” Sitz. Ber. Preuss. Akad. Wiss. Berlin 32 (1923).

  24. E. Schrödinger, Space-Time-Structure (Cambridge University Press, Cambridge, 1950).

    Google Scholar 

  25. P. G. Bergmann, “General theory of relativity,” in Encyclopedia of Physics, Vol. 2, S. Flügge, ed. (Springer, Berlin, 1962).

    Google Scholar 

  26. H.-J. Treder, Astron. Nachr. 315, 1 (1994).

    Google Scholar 

  27. A. S. Eddington, Proc. Roy. Soc. A 99, 1040 (1921).

    Google Scholar 

  28. A. Einstein, “Zur allgemeinen Relaivitätstheorie,” Sitz.-Ber. Preuss. Akad. Wiss. Berlin, 32–38 (1923).

  29. H.-J. Treder, Astron. Nachr. 315, 329 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borzeszkowski, HH.v., Datta, B.K., de Sabbata, V. et al. Local and Non-Local Aspects of Quantum Gravity. Foundations of Physics 32, 1701–1716 (2002). https://doi.org/10.1023/A:1021498622495

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021498622495

Navigation