Skip to main content
Log in

On two fragments with negation and without implication of the logic of residuated lattices

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

The logic of (commutative integral bounded) residuated lattices is known under different names in the literature: monoidal logic [26], intuitionistic logic without contraction [1], H BCK [36] (nowadays called by Ono), etc. In this paper we study the -fragment and the -fragment of the logical systems associated with residuated lattices, both from the perspective of Gentzen systems and from that of deductive systems. We stress that our notion of fragment considers the full consequence relation admitting hypotheses. It results that this notion of fragment is axiomatized by the rules of the sequent calculus for the connectives involved. We also prove that these deductive systems are non-protoalgebraic, while the Gentzen systems are algebraizable with equivalent algebraic semantics the varieties of pseudocomplemented (commutative integral bounded) semilatticed and latticed monoids, respectively. All the logical systems considered are decidable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adillon, R., Verdú, V.: On a contraction-less intuitionistic propositional logic with conjunction and fusion. Studia Logica, Special Issue on Abstract Algebraic Logic 65 (1), 11–30 (2000)

    MathSciNet  Google Scholar 

  2. Avron, A.: The semantics and proof theory of linear logic. Theoretical Computer Science 570, 161–184 (1988)

    Article  MathSciNet  Google Scholar 

  3. Balbes, R., Dwinger, P.: Distributive lattices. University of Missouri Press, Columbia, Missouri, 1974

  4. Banaschewski, B.: Hüllensysteme und Erweiterung von Quasi-Ordnungen. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 2, 117–130 (1956)

    MATH  MathSciNet  Google Scholar 

  5. Blok, W.J., van Alten, C.J.: The finite embeddability property for residuated lattices, pocrims and BCK-algebras. Algebra Universalis 48 (3), 253–271 (2002)

    Article  MathSciNet  Google Scholar 

  6. Blok, W.J., Pigozzi, D.: Algebraizable logics. Mem. Amer. Math. Soc. vol. 396, A.M.S., Providence, 1989

  7. Bou, F., García-Cerdaña, À., Verdú, V.: Analysis of two fragments of the logic of residuated lattices. In: W.A. Carnielli, F.M. Dionísio, P. Mateus (eds.) Proceedings of CombLog'04. Workshop on Combination of Logics: Theory and Applications, Lisbon, 2004, pp. 175–186

  8. Bou, F., García-Cerdaña, À., Verdú, V.: On two fragments with negation and without implication of the logic of residuated lattices. Mathematics Preprint Series 369, IMUB University of Barcelona, 2005. Available on line at http://www.imub.es/publications.html.

  9. Burris, S., Sankappanavar, H.P.: A course in universal algebra. The Millennium Edn. (2000)

  10. Cignoli, R., D'Ottaviano, I.M.L., Mundici, D.: Algebraic foundations of many-valued reasoning, Trends in Logic–-Studia Logica Library, vol. 7. Kluwer Academic Publishers, Dordrecht, 2000

  11. Cotlar, M.: A method of construction of structures and its application to topological spaces and abstract arithmetic (Spanish). Univ. Nac. Tucumán Rev. Ser. A. 4, 105–157 (1944)

    MATH  MathSciNet  Google Scholar 

  12. Crawley, P.: Regular embeddings which preserve lattice structure. Proc. Amer. Math. Soc. 13, 748–752 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  13. Czelakowski, J.: Protoalgebraic logics. Trends in Logic–-Studia Logica Library, vol. 10, Kluwer Academic Publishers, Dordrecht, 2001

  14. Devlin, K.: The joy of sets. Fundamentals of Contemporary Set Theory, second edn. Undergraduate Texts in Mathematics. Springer-Verlag, 1991

  15. Dilworth, R.P., McLaughlin, J.E.: Distributivity in lattices. Duke Math. J. 19, 683–693 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  16. Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets and Systems 124, 271–288 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Esteva, F., Godo, L., García-Cerdaña, À.: On the hierarchy of t-norm based residuated fuzzy logics. In: M. Fitting, E. Orłowska (eds.) Beyond two: theory and applications of multiple-valued logic. Studies in Fuzziness and Soft Computing, vol. 114, Physica, Heidelberg, 2003, pp. 251–272

  18. Font, J.M., Jansana, R., Pigozzi, D.: A survey on abstract algebraic logic. Studia Logica, Special Issue on Abstract Algebraic Logic, Part II 74 (1/2), 13–97 (2003)

    Google Scholar 

  19. Freese, R., Nation, J.B.: Congruence lattices of semilattices. Pacific J. Math. 49, 51–58 (1973). See also the manuscript Clarification to ``Congruence Lattices of Semilattices'', 1997

    MATH  MathSciNet  Google Scholar 

  20. Funayama, N.: On the completion by cuts of distributive lattices. Proc. Imp. Acad. Tokyo 20, 1–2 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gehrke, M., Harding, J., Venema, Y.: MacNeille completions and canonical extensions. Research Report PP-2004-05, Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, 2004

  22. Gil, A.J., Torrens, A., Verdú, V.: On Gentzen systems associated with the finite linear MV-algebras. Journal of Logic and Computation 7 (4), 473–500 (1997)

    MathSciNet  Google Scholar 

  23. Grätzer, G.: General lattice theory, Second edition. Birkhäuser Verlag, Basel, 1998

  24. Hájek, P.: Metamathematics of fuzzy logic, Trends in Logic–-Studia Logica Library, vol. 4. Kluwer Academic Publishers, Dordrecht, 1998

  25. Halmos, P.R.: Lectures on Boolean algebras. Springer-Verlag 1974. Reprint of the ed. published by Van Nostrand, New York, 1963

  26. Höhle, U.: Commutative, residuated l-monoids. In: U. Höhle, E.P. Klement (eds.) Non-classical logics and their applications to fuzzy subsets (Linz, 1992), Theory Decis. Lib. Ser. B Math. Statist. Methods, vol. 32, Kluwer Acad. Publ. Dordrecht, 1995, pp. 53–106

  27. Jipsen, P., Tsinakis, C.: A survey of residuated lattices. In: J. Martinez (ed.) Ordered Algebraic Structures, Kluwer Academic Publishers, Dordrecht, 2002 pp. 19–56

  28. Kowalski, T., Ono, H.: The variety of residuated lattices is generated by its finite simple members. Reports on Mathematical Logic (34), 59–77 (2000). Algebra & substructural logics, Tatsunokuchi, 1999

  29. Kowalski, T., Ono, H.: Residuated lattices: an algebraic glimpse at logics without contraction (preliminary report) (2001)

  30. Lakser, H.: Principal congruences of pseudocomplemented distributive lattices. Proceedings of the American Mathematical Society 37, 32–37 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ono, H.: Semantics for substructural logics. In: K. Došen, P. Schroeder-Heister (eds.) Substructural logics, Oxford University Press, 1993, pp. 259–291

  32. Ono, H.: Proof-theoretic methods for nonclassical logic - an introduction. In: M. Takahashi, M. Okada, M. Dezani-Ciancaglini (eds.) Theories of Types and Proofs, MSJ Memoirs 2, Mathematical Society of Japan, 1998, pp. 207–254

  33. Ono, H.: Closure operators and complete embeddings of residuated lattices. Studia Logica 74 (3), 427–440 (2003)

    Article  MathSciNet  Google Scholar 

  34. Ono, H.: Completions of algebras and completeness of modal and substructural logics. pp. 335–353 (2003)

  35. Ono, H.: Substructural logics and residuated lattices - an introduction. In: V.F. Hendricks, J. Malinowski (eds.) 50 Years of Studia Logica Trends in Logic–-Studia Logica Library. vol. 21, Dordrecht, 2003, pp. 193–228

  36. Ono, H., Komori, Y.: Logics without the contraction rule. The Journal of Symbolic Logic 50 (1), 169–201 (1985)

    Article  MathSciNet  Google Scholar 

  37. Rebagliato, J., Verdú, V.: On the algebraization of some Gentzen systems. Fundamenta Informaticae, Special Issue on Algebraic Logic and its Applications 18, 319–338 (1993)

    MATH  MathSciNet  Google Scholar 

  38. Rebagliato, J., Verdú, V.: A finite Hilbert-style axiomatization of the implication-less fragment of the intuitionistic propositional calculus. Mathematical Logic Quarterly 40, 61–68 (1994)

    MATH  MathSciNet  Google Scholar 

  39. Rebagliato, J., Verdú, V.: Algebraizable Gentzen systems and the deduction theorem for Gentzen systems. Mathematics Preprint Series 175, University of Barcelona, 1995

  40. Russell, R.: The large deviations of random time-changes. Ph. D. Dissertation, University of Dublin, 1998

  41. Schmidt, J.: Zur Kennzeichnung der Dedekind-MacNeilleschen Hülle einer geordneten Hülle. Arch. Math. 7, 241–249 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wójcicki, R.: Theory of logical calculi. Basic theory of consequence operations, Synthese Library, vol. 199. Reidel, Dordrecht, 1988

  43. Wójcicki, R.: A logic is referential iff it is selfextensional. Studia Logica 73 (3), 323–335 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Àngel García-Cerdaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bou, F., García-Cerdaña, À. & Verdú, V. On two fragments with negation and without implication of the logic of residuated lattices. Arch. Math. Logic 45, 615–647 (2006). https://doi.org/10.1007/s00153-005-0324-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-005-0324-9

Key words or phrases

Mathematics Subject Classification (2000)

Navigation