Skip to main content
Log in

Constructive notions of equicontinuity

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

In the informal setting of Bishop-style constructive reverse mathematics we discuss the connection between the antithesis of Specker’s theorem, Ishihara’s principle BD-N, and various types of equicontinuity. In particular, we prove that the implication from pointwise equicontinuity to uniform sequential equicontinuity is equivalent to the antithesis of Specker’s theorem; and that, for a family of functions on a separable metric space, the implication from uniform sequential equicontinuity to uniform equicontinuity is equivalent to BD-N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aczel, P., Rathjen, M.J.: Notes on constructive set theory, Report No. 40. Institut Mittag–Leffler, Royal Swedish Academy of Sciences (2001)

  2. Bishop, E.A., Bridges, D.S.: Constructive analysis, Grundlehren der Math. Wiss. 279. Springer-Verlag, Heidelberg (1985)

  3. Berger, J.: A separation result for varieties of Brouwer’s fan theorem. University of Munich, (2009, preprint)

  4. Berger J., Bridges D.S.: A fan-theoretic equivalent of the antithesis of Specker’s theorem. Indag. Math. N.S. 18(2), 195–202 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berger J., Bridges D.S.: The anti-Specker property, a Heine–Borel property, and uniform continuity. Arch. Math. Logic 46(7–8), 583–592 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bridges, D.S.: Omniscience, sequential compactness, and the anti-Specker property (2009, submitted)

  7. Bridges D.S., Diener H.: The pseudocompactness of [0, 1] is equivalent to the uniform continuity theorem. J. Symb. Logic 72(4), 1379–1383 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bridges, D.S., Diener, H.: The anti-Specker property, positivity, and total boundedness. University of Canterbury (2009, preprint)

  9. Bridges D.S., Richman F.: Varieties of Constructive Mathematics, London Mathematical Society Lecture Notes 97. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  10. Bridges, D.S., Vîţă, L.S.: Techniques of Constructive Analysis. Universitext, Springer, New York (2006)

  11. Bridges D.S., Ishihara H., Schuster P.M., Vîţă L.S.: Strong continuity implies uniform sequential continuity. Arch. Math. Logic 44, 887–895 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. de Swart H.: Elements of intuitionistic analysis; the stone-weierstrass theorem and Ascoli’s theorem. Zeit. Math. Logik und Gründlagen Math. 22, 501–508 (1976)

    Article  MATH  Google Scholar 

  13. Diener, H.: Compactness under constructive scrutiny. Ph.D. thesis, University of Canterbury (2008)

  14. Diener H., Loeb I.: Sequences of real functions on [0, 1] in constructive reverse mathematics. Ann Pure Appl. Logic 157, 50–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dieudonné J.A.: Foundations of Modern Analysis. Academic Press, New York (1960)

    MATH  Google Scholar 

  16. Friedman H.M.: Set Theoretic foundations for constructive analysis. Ann. Math. 105(1), 1–28 (1977)

    Article  Google Scholar 

  17. Ishihara H.: Continuity properties in constructive mathematics. J. Symb. Logic 57, 557–565 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ishihara H.: Sequential continuity in constructive mathematics. In: Calude, C.S., Dinneen, M.J., Sburlan, S.(eds) Combinatorics, Computability and Logic, pp. 5–12. Springer, London (2004)

    Google Scholar 

  19. Ishihara H., Yoshida S.: A constructive look at the completeness of \({\mathcal{D}({\bf R})}\) . J. Symb. Logic 67, 1511–1519 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ishihara H.: Reverse mathematics in Bishop’s constructive mathematics. Phil. Sci. Cahier Special 6, 43–59 (2006)

    Google Scholar 

  21. Lietz, P.: From constructive mathematics to computable analysis via the realizability interpretation. Ph.D. Thesis, Technische Universität, Darmstadt, Germany (2004)

  22. Loeb I.: Equivalents of the (weak) fan theorem. Ann. Pure Appl. Logic 132, 51–66 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Myhill J.: Constructive set theory. J. Symb. Logic 40(3), 347–382 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  24. Simpson, S.G.: Subsystems of Second Order Arithmetic (2nd edn.). Perspectives in logic, association for symbolic logic. (2007, to appear)

  25. Specker E.: Nicht konstruktiv beweisbare Sätze der analysis. J. Symb. Logic 14, 145–158 (1949)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas S. Bridges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridges, D.S. Constructive notions of equicontinuity. Arch. Math. Logic 48, 437–448 (2009). https://doi.org/10.1007/s00153-009-0131-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-009-0131-9

Keywords

Mathematics Subject Classification (2000)

Navigation