Skip to main content
Log in

On the Discrimination Between Classical and Quantum States

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

With the purpose of introducing a useful tool for researches concerning foundations of quantum mechanics and applications to quantum technologies, here we address three quantumness quantifiers for bipartite optical systems: one is based on sub-shot-noise correlations, one is related to antibunching and one springs from entanglement determination. The specific cases of parametric downconversion seeded by thermal, coherent and squeezed states are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nieuwenhuizen, T., et al. (eds.): Beyond The Quantum. World Scientific, Singapore (2007)

    Google Scholar 

  2. Accardi, L., et al.: Foundations of Probability and Physics, vol. 5. AIP, New York (2009)

    MATH  Google Scholar 

  3. Genovese, M.: Phys. Rep. 413, 319 (2005) and refs therein

    Article  MathSciNet  ADS  Google Scholar 

  4. Auletta, G.: Foundations and Interpretation of Quantum Mechanics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  5. Ghose, P.: Testing Quantum Mechanics on a New Ground. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  6. Santos, E.: Adv. Sci. Lett. 2, 475 (2009)

    Article  Google Scholar 

  7. Genovese, M., Novero, C., Predazzi, E.: Phys. Lett. B 513, 401 (2001)

    Article  MATH  ADS  Google Scholar 

  8. Pirandola, S.: Phys. Rev. A 68, 0311186 (2003)

    Article  Google Scholar 

  9. Serafini, A., et al.: Phys. Rev. A 69, 022318 (2004)

    Article  ADS  Google Scholar 

  10. Serafini, A., et al.: J. Opt. B 7, R19 (2005)

    Article  ADS  Google Scholar 

  11. Serafini, A., et al.: J. Opt. B 6, 591 (2004)

    Article  ADS  Google Scholar 

  12. Paris, M.G.A., et al.: Phys. Rev. A 68, 012314 (2003)

    Article  ADS  Google Scholar 

  13. D’Ariano, G.M., Sacchi, M.F., Kumar, P.: Phys. Rev. A 59, 826 (1999)

    Article  ADS  Google Scholar 

  14. Klyshko, D.N.: Phys. Lett. A 213, 7 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Mukunda, A.N., Simon, R.: J. Phys. A 31, 565 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Vogel, W.: Phys. Rev. Lett. 84, 1849 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Richter, Th., Vogel, W.: Phys. Rev. Lett. 89, 283601 (2002)

    Article  ADS  Google Scholar 

  18. Richter, Th., Vogel, W.: J. Opt. B 5, S371 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  19. Lvovsky, A., Shapiro, S.: Phys. Rev. A 65, 033830 (2002)

    Article  ADS  Google Scholar 

  20. Dalton, B.J.: Phys. Scr. T 12, 43 (1986)

    Article  ADS  Google Scholar 

  21. Schleich, W., Wheeler, J.A.: Nature (Lond.) 326, 574 (1987)

    Article  ADS  Google Scholar 

  22. Schiller, S., et al.: Phys. Rev. Lett. 77, 2933 (1996)

    Article  ADS  Google Scholar 

  23. Vedral, V., Plenio, M.B.: Phys. Rev. Lett. 57, 1619 (1998)

    ADS  Google Scholar 

  24. Olivares, S., Paris, M.G.A.: Phys. Rev. A 70, 032112 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  25. Alicki, R., Van Ryn, N.: J. Phys. A 41, 062001 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  26. Brida, G., et al.: Opt. Express 16, 11750 (2008)

    Article  ADS  Google Scholar 

  27. Brida, G., et al.: Phys. Rev. A 79, 044102 (2009)

    Article  ADS  Google Scholar 

  28. Ishkakov, T., et al.: JETP Lett. 88, 660 (2008)

    Article  ADS  Google Scholar 

  29. Spagnolo, N., et al.: Phys. Rev. A 80, 032318 (2009)

    Article  ADS  Google Scholar 

  30. Ourjumtsev, A., et al.: Nature 448, 784 (2007)

    Article  ADS  Google Scholar 

  31. Brida, G., et al.: EPL 87, 64003 (2009)

    Article  ADS  Google Scholar 

  32. Brida, G., et al.: arXiv:0907.4117 (2009)

  33. Degiovanni, I.P., et al.: Phys. Rev. A 79, 063836 (2009)

    Article  ADS  Google Scholar 

  34. Ruo-Berchera, I.: Adv. Sci. Lett. 2, 407 (2009)

    Article  Google Scholar 

  35. Degiovanni, I.P., et al.: Phys. Rev. A 76, 062309 (2007)

    Article  ADS  Google Scholar 

  36. Lee, C.T.: Phys. Rev. A 41, 1569 (1990)

    Article  ADS  Google Scholar 

  37. Lee, C.T.: Phys. Rev. A 42, 1608 (1990)

    Article  ADS  Google Scholar 

  38. Mandel, L.: Opt. Lett. 4, 205 (1979)

    Article  ADS  Google Scholar 

  39. Simon, R.: Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  40. Adesso, G., Illuminati, F.: J. Phys. A 40, 7821 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Brida, G., et al.: Phys. Rev. Lett. 102, 213602 (2009)

    Article  ADS  Google Scholar 

  42. Brida, G., Genovese, M., Ruoberchera, I.: (2009) (submitted)

  43. Degiovanni, I., et al.: (2009) (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Genovese.

Additional information

This work has been supported by SanPaolo Foundation, Quantum Candela EU Project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brida, G., Bondani, M., Degiovanni, I.P. et al. On the Discrimination Between Classical and Quantum States. Found Phys 41, 305–316 (2011). https://doi.org/10.1007/s10701-009-9396-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9396-4

Navigation