Skip to main content
Log in

Three Dual Ontologies

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

In this paper we give an example of intertranslatability between an ontology of individuals (nominalism), an ontology of properties (realism), and an ontology of facts (factualism). We demonstrate that these three ontologies are dual to each other, meaning that each ontology can be translated into, and recaptured from, each of the others. The aim of the enterprise is to raise the possibility that, at least in some settings, there may be no need for considerations of ontological primacy. Whether the world is made up of things, or properties, or facts, may be no more than a matter of how we look at it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Abramsky, S. and Jung, A.: 1994, Domain theory, in S. Abramsky, D. Gabbay and T. Maibaum (eds.), Handbook of Logic in Computer Science, Vol. III, Clarendon Press, Oxford, pp. 1-168.

    Google Scholar 

  • Armstrong, D.: 1978, Universals and Scientific Realism. Vol 1: Nominalism and Realism, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Armstrong, D.: 1995, Universals and Scientific Realism. Vol 2: A Theory of Universals, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Armstrong, D.: 1997, A World of States of Affairs, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Boole, G.: 1847, The Mathematical Analysis of Logic, Being an Essay Toward a Calculus of Deductive Reasoning, Macmillan, Cambridge.

    Google Scholar 

  • Brink, C. and Rewitzky, I.: 2001, A Paradigm for Program Semantics: Power Stuctures and Duality, Studies in Logic, Language and Information, CSLI Publications, Stanford.

    Google Scholar 

  • Burris, S. and Sankappanavar, H.: 1981, A Course in Universal Algebra, Springer-Verlag, Berlin.

    Google Scholar 

  • Chagrov, A. and Zakharyaschev, M.: 1997, Modal Logic, Oxford Logic Guides 35, Clarendon Press, Oxford.

    Google Scholar 

  • Cleave, J.: 1994, A Study of Logics, Oxford Logic Guides 18, Clarendon Press, Oxford.

    Google Scholar 

  • Davey, B. and Priestley, H.: 1990, Introduction to Lattices and Order, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Droste, M. and Göbel, R.: 1990, Nondeterministic information systems and their domains, Theoret. Comput. Sci. 75, 289-309.

    Google Scholar 

  • Edalaat, A. and Smyth, M.: 1993, I-Categories as a framework for solving domain equations, Theoret. Comput. Sci. 115, 77-106.

    Google Scholar 

  • Gabbay, D. M., Hogger, C. J. and Robinson, J. A. (eds.): 1994, Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 1-4, Clarendon Press, Oxford.

    Google Scholar 

  • Abramsky, S., Gabbay, D. M. and Maibaum, T. S. E. (eds.): 1992-2000, Handbook of Logic in Computer Science, Oxford Science Publications, Vol. 1-5, Clarendon Press, Oxford.

    Google Scholar 

  • Gabbay, D. and Guenthner, F. (eds.): 1983-1989, Handbook of Philosophical Logic, Synthese Library, Vol. I-IV, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • van Leeuwen, J. (ed.): 1990, Handbook of Theoretical Computer Science, Vol. A-B, Elsevier, Amsterdam.

    Google Scholar 

  • Hamilton, P.: 1988, Logic for Mathematicians, Cambridge Univ. Press, Cambridge, revised edition.

    Google Scholar 

  • Honderich, T. (ed.): 1995, The Oxford Companion to Philosophy, Oxford Univ. Press, Oxford.

    Google Scholar 

  • Hughes, G. and Cresswell, M.: 1996, A New Introduction to Modal Logic, Routledge and Kegan Paul, London.

    Google Scholar 

  • Jónsson, B. and Tarski, A.: 1951, Boolean algebras with operators I, Amer. J. Math. 73, 891-939.

    Google Scholar 

  • Jónsson, B. and Tarski, A.: 1952, Boolean algebras with operators II, Amer. J. Math. 74, 127-167.

    Google Scholar 

  • Kripke, S.: 1959, A completeness theorem in modal logic, J. Symbolic Logic 24, 1-14.

    Google Scholar 

  • Priestley, H.: 1970, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2, 186-190.

    Google Scholar 

  • Priestley, H.: 1972, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 24(3), 507-530.

    Google Scholar 

  • Priestley, H.: 1984, Ordered sets and duality for distributive lattices, Ann. Discrete Math. (Orders, Descriptions and Rules) 23, 39-60.

    Google Scholar 

  • Quine, W.: 1953, 1961, 1980, On what there is, in From a Logical Point of View, Harvard Univ. Press.

  • Scott, D.: 1970, Outline of a mathematical theory of computations, in Proceedings of the Fourth Annual Princeton Conference on Information Sciences and Systems, pp. 169-176.

  • Scott, D.: 1982, Domains for denotational semantics, in M. Nielson and E. Schmidt (eds.), Proceedings of ICALP 9, Lecture Notes in Comput. Sci. 140, pp. 577-613.

  • Smyth, M.: 1983, Power domains and predicate transformers: A topological view, in J. Diaz (ed.), Proceedings of ICALP 10, Lecture Notes in Comput. Sci. 154, Springer-Verlag, Berlin, pp. 662-675.

    Google Scholar 

  • Stone, M.: 1936, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40, 37-111.

    Google Scholar 

  • Stone,M.: 1937, Topological representations of distributive lattices and Brouwerian logics, Casopis Pro Potování Mathematiky 67, 1-25.

    Google Scholar 

  • Wittgenstein, L.: 1922, Tractatus Logico-Philosophicus, Routledge and Kegan Paul, London.

    Google Scholar 

  • Zhang, G.-Q.: 1994, A representation of SFP, Inform. and Comput. 110, 233-263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brink, C., Rewitzky, I. Three Dual Ontologies. Journal of Philosophical Logic 31, 543–568 (2002). https://doi.org/10.1023/A:1021204628219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021204628219

Navigation