Skip to main content
Log in

Entropy and information in evolving biological systems

  • Published:
Biology and Philosophy Aims and scope Submit manuscript

Abstract

Integrating concepts of maintenance and of origins is essential to explaining biological diversity. The unified theory of evolution attempts to find a common theme linking production rules inherent in biological systems, explaining the origin of biological order as a manifestation of the flow of energy and the flow of information on various spatial and temporal scales, with the recognition that natural selection is an evolutionarily relevant process. Biological systems persist in space and time by transfor ming energy from one state to another in a manner that generates structures which allows the system to continue to persist. Two classes of energetic transformations allow this; heat-generating transformations, resulting in a net loss of energy from the system, and conservative transformations, changing unusable energy into states that can be stored and used subsequently. All conservative transformations in biological systems are coupled with heat-generating transformations; hence, inherent biological production, or genealogical proesses, is positively entropic. There is a self-organizing phenomenology common to genealogical phenomena, which imparts an arrow of time to biological systems. Natural selection, which by itself is time-reversible, contributes to the organization of the self-organized genealogical trajectories. The interplay of genealogical (diversity-promoting) and selective (diversity-limiting) processes produces biological order to which the primary contribution is genealogical history. Dynamic changes occuring on times scales shorter than speciation rates are microevolutionary; those occuring on time scales longer than speciation rates are macroevolutionary. Macroevolutionary processes are neither redicible to, nor autonomous from, microevolutionary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Bowers, M. A. and J. H. Brown: 1982, ‘Body size and coexistence in desert rodents: Chance or community structure?’, Ecology 63, 391–400.

    Google Scholar 

  • Brillouin, L.: 1962, Science and Information Theory, Academic Press, 2nd ed., New York.

    Google Scholar 

  • Brooks, D. R.: 1985, ‘Historical ecology: A new approach to studying the evolution of ecological associations’, Ann. Missouri Bot. Garden 72, 660–680.

    Google Scholar 

  • Brooks, D. R., P. H. LeBlond, and D. D. Cumming: 1984, ‘Information and entropy in a simple evolution model’, J. Theor. Biol. 109, 77–93.

    Google Scholar 

  • Brooks, D. R., D. D. Cumming, and P. H. LeBlond: 1988, ‘Dollo's Law and the Second Law of Thermodynamics: Analogy or extension?’, in Entropy. Information and Evolution: New Perspectives on Physical and Biological Evolution. ed. B. Weber, D. J. Depew and J. D. Smith, MIT Press, Cambridge, 189–224.

    Google Scholar 

  • Brooks, D. R. and R. T. O'Grady: 1986, ‘Non-equilibrium thermodynamics and different axioms of evolution’, Acta Biotheor. 35, 77–106.

    Google Scholar 

  • Brooks, D. R. and E. O. Wiley: 1988, Evolution as Entropy: Toward a Unified Theory of Biology. Univ. Chicago Press. 2nd ed., Chicago.

    Google Scholar 

  • Buss, L.: 1987, The Evolution of Individuality. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Chaitin, G. J.: 1975, ‘A theory of program size formally equivalent to information theory’, J. ACM 22, 329–340.

    Google Scholar 

  • Charlesworth, B., R. Lande, and M. Slatkin: 1982, ‘A neo-Darwinian commentary on macroevolution’, Evolution 36, 474–498.

    Google Scholar 

  • Collier, J.: 1986, ‘Entropy in evolution’, Biol. Philos. 1, 5–24.

    Google Scholar 

  • Collier, J.: 1988, ‘Supervenience and reduction in biological hierarchies’, Can. J. Philos. suppl. vol. 14, 209–234.

    Google Scholar 

  • Collier, J. D.: 1989, ‘Intrinsic information’, in Vancouver Studies in Cognitive Science, ed. P. P. Hanson, University of British Columbia Press, Vancouver.

    Google Scholar 

  • Depew, D. J. and B. Weber: 1988, ‘Consequences of nonequilibrium thermodynamics for the Darwinian tradition’, in Entropy, Information and Evolution: New Perspectives on Physical and Biological Evolution, eds. B. Weber, and J. D. Smith, MIT Press, Cambridge, 317–354.

    Google Scholar 

  • Diamond, J.: 1986, ‘Evolution of ecological segregation in the New Guinea montane avifauna’, in Community Ecology, eds. J. Diamond and T. J. Case, Harper and Row, New York, 98–125.

    Google Scholar 

  • Eldredge, N.: 1985, Unfinished Synthesis, Columbia Univ. Press, New York.

    Google Scholar 

  • Eldredge, N.: 1986, ‘Information, economics and evolution’, Ann. Rev. Ecol. Syst. 17, 351–369.

    Google Scholar 

  • Eldredge, N. and S. N. Salth: 1984, ‘Hierarchy and evolution’, in Oxford Surveys in Evolutionary Biology, eds. R. Dawkins and M. Ridley. 1, 182–206.

  • Emig, C. C.: 1985, ‘Relations entre l'espece structure dissipatrice biologique, et l'ecosysteme, structure dissipatrice ecologique. Contribution a la theory de l'evolution des systemes non-en equilibre’, C. R. Acad, Sci. Paris 300, 323–326.

    Google Scholar 

  • Endler, J. A.: 1986, Natural Selection in the Wild. Princeton University Press, Princeton NJ.

    Google Scholar 

  • Fink, W. L.: 1982, ‘The conceptual relationship between ontogeny and phylogeny’, Paleobiology 8, 254–264.

    Google Scholar 

  • Frautschi, S.: 1982, ‘Entropy in an expanding universe’, Science 217, 593–599.

    Google Scholar 

  • Frautschi, S.: 1988, ‘Entropy in an expanding universe’, in Entropy, Information and Evolution: New Perspective on Physical and Biological Evolution, eds. B. Weber, D. J. Depew and J. D. Smith, MIT Press, Cambridge, 11–22.

    Google Scholar 

  • Futuyma, D. J.: 1988, ‘Sturm und Drang and the Evolutionary Synthesis’, Evolution 42, 217–226.

    Google Scholar 

  • Gatlin, L. L.: 1972, Information Theory and the Living System, Columbia Univ. Press, New York.

    Google Scholar 

  • Goodwin, B. C.: 1982, ‘Development and evolution’, J. Theor. Biol. 97, 43–55.

    Google Scholar 

  • Goodwin, B. C.: 1985, ‘Changing from an evolutionary to a generative paradigm in biology’, in Evolutionary Theory: Paths into the Future, ed. J. W. Pollard, John Wiley & Sons, London, 99–120.

    Google Scholar 

  • Gould, S. J.: 1980, ‘Is a new and general theory of evolution emerging?’, Paleobiology 6, 119–120.

    Google Scholar 

  • Graham, R. W.: 1986, ‘Response of mammalian communities to environmental changes during the late Quaternery’, in Community Ecology, eds. J. Diamond and T. J. Case, Harper and Row, New York, 300–313.

    Google Scholar 

  • Hailman, J. P.: 1977, Optical Signals: Animal Communication and Light, Univ. Indiana Press, Bloomington.

    Google Scholar 

  • Hennig, W.: 1966, Phylogenetic Systematics. Univ. Illinois Press, Urbana.

    Google Scholar 

  • Kolmogorov, A. N.: 1968, ‘Logical basis for information theory and probability theory’, IEEE Transactions on Information Theory, 14, 662–664.

    Google Scholar 

  • Landsberg, P. T.: 1984a, ‘Is equilibrium always an entropy maximum?’, J. Stat. Physics 35, 159–169.

    Google Scholar 

  • Landsberg, P. T.: 1984b, ‘Can entropy and “order” increase together?”, Physics Letters 102A, 171–173.

    Google Scholar 

  • Lauder, G. V.: 1981, ‘Form and function: Structural analysis in evolutionary biolog’, Paleobiology 7, 430–442.

    Google Scholar 

  • Lauder, G. V.: 1982, ‘Historical biology and the problem of design’, J. Theor. Biol. 97, 57–68.

    Google Scholar 

  • Layzer, D.: 1975, ‘The arrow of time’, Sci. Amer. 233, 56–69.

    Google Scholar 

  • Levins, R.: 1975, ‘Evolution of communities near equilibrium’, in Ecology and Evolution of Communities, ed. M. L. Cody and J. M. Diamond, Belknap Press, Cambridge, Mass, 16–50.

    Google Scholar 

  • Lima-de-Faria. A.: 1983, Molecular Order and Organization of the Chromosome, Elsevier, Amsterdam.

    Google Scholar 

  • Lindeman, R. L.: 1942, ‘The trophic-dynamic aspect of ecology’, Ecology 23, 399–418.

    Google Scholar 

  • Lotka, A. J.: 1913, ‘Evolution from the standpoint of physics, the principle of the persistence of stable forms’, Sci. Amer. Suppl. 75, 345–346, 354, 379.

    Google Scholar 

  • Lotka, A. J.: 1925, Elements of Physical Biology, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Luria, S. E., S. J. Gould, and S. Singer: 1981, A View of Life, Benjamin Cummings, Menlo Park.

    Google Scholar 

  • MacArthur, R. H.: 1958, ‘Population ecology of some warblers of northeastern coniferous forests’, Ecology 39, 599–619.

    Google Scholar 

  • MacArthur, R. H.: 1972, Geographical Ecology, Harper and Row, New York.

    Google Scholar 

  • Maurer, B. A.: 1985, ‘On the ecological and evolutionary roles of competition’, Oikos 45, 300–302.

    Google Scholar 

  • Maurer, B. A.: 1987, ‘Scaling of biological community structure: A systems approach to community complexity’, J. Theor. Biol. 127, 97–110.

    Google Scholar 

  • Maurer, B. A. and D. R. Brooks.: (submitted), ‘Scaling of entropy production in biological systems’, Biosystems.

  • Prigogine, I.: 1967, Thermodynamics of Irreversible Processes. Wiley-Intersci. 3rd ed., New York.

    Google Scholar 

  • Prigogine, I.: 1980, From Being to Becomming. W. H. Freeman, San Francisco.

    Google Scholar 

  • Prigogine, I. and J. W. Wiame: 1946, ‘Biologie et thermodynamique des phenomenes irreversibles’, Experientia 2, 451–453.

    Google Scholar 

  • Ricklefs, R. E.: 1987, ‘Community diversity: Relative roles of local and regional processes’, Science 235 167–171.

    Google Scholar 

  • Root, R. B.: 1967, ‘The niche exploitation pattern of the blue-grey gnatcatcher’, Ecological Monogr. 37, 317–350.

    Google Scholar 

  • Roughgarden, J., S. D. Gaines, and S. W. Pacala: 1988, ‘Supply side ecology: The role of physical transport processes’, in Organization of Communities Past and Present, eds., J. H. R. Gee and P. S. Giller, Blackwell Scientific, Oxford, 491–518.

    Google Scholar 

  • Salthe, S. N.: 1985, Evolving Hierarchical Systems: Their Structure and Representation. Columbia Univ. Press, New York.

    Google Scholar 

  • Saunders, P. T. and M.-W. Ho: 1985, ‘The complexity of organisms’, in Evolutionary Theory: Paths into the Future, ed. J. W. Pollard, John Wiley & Sons, London, 121–139.

    Google Scholar 

  • Schoener, T. W.: 1974, ‘Resource partitioning in ecological communities’, Science 185, 27–39.

    Google Scholar 

  • Schoener, T. W.: 1986, ‘Overview: Kinds of communities — ecology becomes pluralistic’, in, Community Ecology, eds. J. Diamond and T. J. Case, Harper and Row, New York, 467–479.

    Google Scholar 

  • Shannon, C. E., and W. Weaver: 1949, The Mathematical Theory of Communication, University of Illinois Press, Urbana.

    Google Scholar 

  • Slatkin, M.: 1980, ‘Ecological character displacement’, Ecology 61, 163–177.

    Google Scholar 

  • Smith, J. D. H.: 1988, ‘A class of mathematical models for evolution and Hierarchical Information Theory’, Inst. Math. Appl. Preprint Series 396, 1–13.

    Google Scholar 

  • Sober, E.: 1984, The Nature of Selection, MIT Press, Cambridge, MA.

    Google Scholar 

  • Stebbins, G. L. and F. C. Ayala: 1981, ‘Is a new evolutionary synthesis necessary’, Science 213, 967–971.

    Google Scholar 

  • Waddington, C. H.: 1966, ‘Fields and gradients’, in Major Problems in Developmental Biology, ed. M. Locke, Academic Press, London, 105–124.

    Google Scholar 

  • Wake, D. B. and A. Larson: 1987, ‘Multidemensional analysis of an evolving lineage’, Science 238, 42–48.

    Google Scholar 

  • Weber, B., D. J. Depew, and J. D. Smith, eds.: 1988, Entropy, Information and Evolution: New Perspectives on Physical and Biological Evolution, MIT Press, Cambridge.

    Google Scholar 

  • Weber, B. H., D. J. Depew, C. Dyke, S. N. Salthe, E. D. Schneider, R. E. Ulanowicz, and J. S. Wicken: 1989, ‘Evolution in thermodynamic perspective: An ecological approach’, Biol. Philo.: in volume.

  • Wicken, J. S.: 1987a, Evolution, Thermodynamics and Information: Extending the Darwinian Paradigm, Oxford Univ. Press, New York.

    Google Scholar 

  • Wicken, J.: 1987b, ‘Entropy and information: Suggestions for common language’, Phil. Sci. 54, 176–193.

    Google Scholar 

  • Wiley, E. O.: 1981, Phylogenetics: The Theory and Practice of Phylogenetic Systematics, Wiley-Intersci, New York.

    Google Scholar 

  • Wiley, E. O.: 1988, ‘Vicariance biogeography’, Ann. Rev. Ecol. Syst. 19, 513–542.

    Google Scholar 

  • Zotin, A. I. and R. S. Zotina: 1978, ‘Experimental basis for qualitative phenomenological theory of development’, in Thermodynamics of Biological Processes, ed. I. Lamprecht and A. I. Zotin, deGruyter, Berlin, 61–84.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Authorship alphabetical

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, D.R., Collier, J., Maurer, B.A. et al. Entropy and information in evolving biological systems. Biol Philos 4, 407–432 (1989). https://doi.org/10.1007/BF00162588

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00162588

Key words

Navigation