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A Hyperimmune Minimal Degree
and an ANR 2-Minimal Degree

Mingzhong Cai

Abstract We develop a new method for constructing hyperimmune minimal
degrees and construct an ANR degree which is a minimal cover of a minimal
degree.

1 Introduction

A nonrecursive Turing degree a is minimal if the interval (0, a) is empty; that is,
there is no degree strictly between 0 and a. Relativizing this definition, a degree
a > b is a minimal cover of b if the interval (b, a) is empty. Moreover, a is a strong
minimal cover of b if D(< a) = D(≤ b); that is, every degree strictly below a is
below b.

The primary motivation for this paper is a long-standing question of Yates.

Question 1.1 (Yates) Does every minimal degree have a strong minimal cover?

A function f dominates g if f (n) ≥ g(n) for cofinitely many n. A degree a is
hyperimmune if there is a function f ≤T a which is not dominated by any recursive
function; otherwise, a is hyperimmune-free. A function f is fixed-point-free if for
every e, ϕe 6= ϕ f (e). A degree a is fixed-point-free (FPF) if there is a function
f ≤T a which is fixed-point-free.

A recent and remarkable result in the positive direction for Question 1.1 is Lewis’s
Theorem [8, Theorem 4.3].

Theorem 1.2 (Lewis) Every hyperimmune-free degree which is not FPF has a
strong minimal cover.

So in order to give a negative answer to Question 1.1, we have to look for minimal
degrees that are either FPF or hyperimmune.
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On one hand, it was also an old question whether FPF minimal degrees exist.
Kumabe gave a positive solution to this question in an unpublished note and Lewis
simplified the proof in [6].

On the other hand, the observation might seem easy: it is well known that there is
a minimal degree below 0′ [10, Theorem 1] and any nonrecursive degree below 0′ is
hyperimmune [9, Theorem 1.2]. However, this argument doesn’t apply to the degrees
that are not recursive in 0′. Miller and Martin [9, Section 3] then asked whether there
is a hyperimmune minimal degree which is not recursive in 0′.

Our second motivation is the finite maximal chain problem for GL2 degrees, that
is, those degrees a such that a′′ > (a ∨ 0′)′. A degree a has the finite maximal
chain property if there is a chain 0 = a0 < a1 < · · · < an = a where each ai+1
is a minimal cover of ai . Lerman [7, Section IV.3] asked whether there is a GL2
degree with the finite maximal chain property. Note that 0 is GL2 (i.e., not GL2).
Moreover, it is a classical result that all minimal degrees are GL2 [5, Theorem 1],
and so in order to find a GL2 degree with the finite maximal chain property, we at
least need a maximal chain of length 3, that is, 0 < a < b where a is minimal and b
is a minimal cover of a.

Regardless of the length of such a maximal chain, we need to build a GL2 degree
b minimal over a GL2 degree a. It is not difficult to prove (see Propositions 6.1) that
if b is a minimal cover of a GL2 degree a, and if b is hyperimmune-free relativized
to a or b ≤ a′, then b is also GL2. That is to say, in order to find a GL2 degree with
the finite maximal chain property, we need a relativized version of “a hyperimmune
minimal degree not recursive in 0′.”

Cooper [2] answered Miller and Martin’s question using an indirect argument. He
proved that any d ≥ 0′ is the jump of a minimal degree and showed that any minimal
degree whose jump is 0′′ is not below 0′. In addition, he used Jockusch’s result that
a′

≥ 0′′ implies that a is hyperimmune [4]. Therefore, any minimal degree whose
jump is 0′′ is hyperimmune and not below 0′.

The technical difficulty with producing a direct proof is that in the standard mini-
mal degree construction we don’t have a method which explicitly forces the minimal
degree to be hyperimmune. In this paper, we will provide a new minimal degree
construction and use it to directly construct a hyperimmune minimal degree. In ad-
dition, our construction can be easily augmented, given any degree d, to construct a
hyperimmune minimal degree which is not recursive in d. Note that this can be done
by Cooper’s argument: one can find a minimal degree whose jump is d′′, and apply
Jockusch’s result as above to show that it is hyperimmune; in addition, such a mini-
mal degree cannot be recursive in d because otherwise its jump would be below d′.

The third motivation for this paper comes from some recent research on array non-
recursive (ANR) degrees. Recall that the modulus function of K , mK (n) is defined
as the least s such that ϕm,s(m) ↓ for every m ≤ n, m ∈ K .

Definition 1.3 A degree a is array nonrecursive if there is a function f ≤T a
which is not dominated by the modulus function of K .

ANR degrees share a lot of nice properties with GL2 degrees (see [3] and [1]). So it is
natural to ask whether there is an ANR degree with the finite maximal chain property.
In addition, the following theorems about ANR degrees are quite interesting (in the
sense of Question 1.1).
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Theorem 1.4 (Downey, Jockusch, Stob [3, Theorem 2.1]) No ANR degree is mini-
mal.

Theorem 1.5 (Downey, Jockusch, Stob [3, Theorem 3.4]) No ANR degree has a
strong minimal cover.

In some sense, ANR degrees are “high” in the Turing degrees and these degrees with
strong minimal covers must be “lower” than ANR ones. Minimal degrees are, of
course, the lowest possible nonrecursive degrees. From this point of view, Ques-
tion 1.1 is asking whether these “lowest” degrees have strong minimal covers.

For convenience we state the following definition.

Definition 1.6 A degree a is 1-minimal if it is minimal. A degree a is (n + 1)-
minimal if it is a minimal cover of an n-minimal degree.

It is immediate that a degree is n-minimal for some n ∈ ω if and only if it has the
finite maximal chain property.

Similarly to Question 1.1, one might ask whether every n-minimal degree has
a strong minimal cover. The answer is no and actually we will construct an ANR
degree which is 2-minimal. This result gives an ANR degree with the finite chain
property and together with Theorem 1.5 implies the following corollary.

Corollary 1.7 There is a 2-minimal degree that does not have a strong minimal
cover.

2 Basic Definitions

Since, to guarantee hyperimmunity or array nonrecursiveness, we need to code in
sufficiently large numbers in a minimal degree or a minimal cover construction, we
work with approximations in ω<ω rather than 2<ω.

A tree is a (possibly partial) function from ω<ω to ω<ω with the usual order-
preserving properties. In some cases, it will be more convenient to consider trees
whose domains or ranges are restricted to binary strings in 2<ω. A node on a tree is
a string in the range of the tree. A leaf is a node which does not have successors on
the tree. A path on a tree is an (induced) image of an infinite string, and we use [T ]

to denote the set of all paths on T .
We call a tree T finite if the domain of T is finite. We usually use σ to denote

strings in the domain of a tree T , and τ to denote strings in the range. We use α, β, γ
only for infinite strings. All other lowercase Greek letters denote finite strings.

For two strings σ and τ , we use σ ∗ τ for the usual concatenation of σ with τ . For
simplicity, in the case that τ = 〈i〉, that is, τ is of length 1, we use σ ∗ i instead of
σ ∗ 〈i〉.

We use Even to denote the set of all strings of even length, and for convenience we
call a string even if it is in Even. A node on T is an even-node if it is the image of an
even string. Note that “an even node” and “an even-node” have different meanings.
In this paper, we will not use the former notion.

Given two strings τ0, τ1, we write τ0|eτ1 if they e-split; that is, there is an x such
that ϕ

τ0
e (x) ↓6= ϕ

τ1
e (x) ↓. Our convention is that ϕσ

e (x) ↓ only if for all y < x ,
ϕσ

e (y) ↓.
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3 A Hyperimmune Minimal Degree

Theorem 3.1 (Cooper) For any degree d, there is a hyperimmune minimal degree
which is not recursive in d.

Proof We approximate an infinite string α in ωω by a sequence of (partial) recursive
trees 〈Ti 〉 all of which map from 2<ω to ω<ω.

Definition 3.2 A tree T is special if it satisfies the following properties:
1. T (∅) ↓.
2. For any string σ ∈ Even, if T (σ ) ↓, then neither T (σ ) nor T (σ ∗ 0) is a leaf.
3. For any σ , T (σ ∗ 0) ↓⇔ T (σ ∗ 1) ↓.

It is worth noting that although on a special tree some nodes do not branch, the paths
on a special tree still contain a copy of the Cantor space, and this allows us to carry
out Spector’s minimal degree construction in a slightly different way.

In this construction we will require all trees to be special. In order to code in
some sufficiently large numbers we want all trees in the construction to have another
property as well.

Definition 3.3 A tree T is recursively unbounded if there is no recursive function
that dominates every path on T .

In particular, for any special tree T considered in the construction, we also provide a
recursive function f (n) such that f (n) is even for every n and for every string σ of
length f (n), if T (σ ) ↓, then ϕn(|T (σ ∗1)|) ↓ if and only if T (σ ∗1∗0) ↓. In addition,
if both converge, then for i = 0, 1, T (σ ∗1∗ i) ⊃ T (σ ∗1)∗ (ϕn(|T (σ ∗1)|)+ i +1).
We call such a function a witness function for T .

It is easy to see that if we have a witness function f (n) for a special tree T , then T
is recursively unbounded, and we can take an appropriate full subtree to satisfy one
requirement for hyperimmunity. In our construction, a common example of such a
function is f (n) = 2n.

The following lemma is very easy to prove but it is convenient to make it explicit.

Lemma 3.4 If T is a special tree and σ is an even string in the domain of T , then
FS(T, σ ), the full subtree of T above σ defined by FS(T, σ )(σ ′) = T (σ ∗σ ′), is also
special.

Proof Immediate. �

3.1 Requirements First of all, as in a standard minimal degree construction, we
need the following requirements to guarantee that deg(α) is minimal:

Re: either ϕα
e is not total, or it is recursive, or α ≤T ϕα

e .
It is easy to see that hyperimmunity of a degree a is equivalent to having a function
f ≤T a which is not dominated everywhere by any recursive function; that is, for
every recursive function h, there is an x such that f (x) > h(x). We will require α to
be such a function.

Pe: either ϕe is not total, or ∃x(α(x) > ϕe(x) ↓).
To make sure that α �T d, we fix a set D ∈ d and the following requirements.

Qe: either ϕD
e is not total, or ∃x(α(x) 6= ϕD

e (x) ↓).
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A tree T forces a requirement Re, Pe, or Qe if the requirement holds for every path
α ∈ [T ]. Next, we provide basic modules to find a subtree T ′ of any given special T
with a witness function such that T ′ forces one requirement Re, Pe, or Qe. It is then
easy to construct a sequence of trees 〈Ti 〉 which approximates a string α satisfying
all the requirements.

3.2 Initial tree T0 We begin our construction with a special tree T0. First let
T0(∅) = ∅, T0(0) = 0, T0(1) = 1, T0(00) = 00, and T0(01) = 01. Com-
pute ϕ0(1). If it does not converge then T (1) = 1 is a leaf; if it converges, let
T0(10) = 1 ∗ (ϕ0(1) + 1) and T0(11) = 1 ∗ (ϕ0(1) + 2).

Inductively for any σ of length 2k, if we have defined T0(σ ) = τ , then we let
T0(σ ∗0) = τ ∗0, T0(σ ∗1) = τ ∗1, T0(σ ∗00) = τ ∗00, and T0(σ ∗01) = τ ∗01. Next
we compute ϕk(2k + 1). If it does not converge, τ ∗ 1 is then a leaf; if it converges,
let T0(σ ∗ 10) = τ ∗ 1 ∗ (ϕk(2k + 1) + 1) and T0(σ ∗ 11) = τ ∗ 1 ∗ (ϕk(2k + 1) + 2).
Note that T0 is a special tree and f (n) = 2n is a witness function for it.

3.3 Forcing α to be hyperimmune Suppose we are given a special tree T with a
witness function f (n) and we want to force Pe. If ϕe is not total then we are done.
If it is total, then we need a subtree T ′ of T which forces α to be not dominated
everywhere by ϕe, that is, α(x) > ϕe(x) for some x .

First find any σ of length f (e) in the domain of T . By the definition of a witness
function we know that ϕe(|T (σ ∗ 1)|) ↓ if and only if T (σ ∗ 1 ∗ 0) ↓. By assumption
ϕe(|T (σ ∗ 1)|) converges, so T (σ ∗ 1 ∗ i) ⊃ T (σ ∗ 1) ∗ (ϕn(|T (σ ∗ 1)|) + i + 1).
We can now take the full subtree of T above σ ∗ 1 ∗ 0 as T ′. By Lemma 3.4 it is also
a special tree. By the Padding Lemma we can recursively find a witness function f ′

for T ′ from f .

3.4 Forcing α �T d Given a special tree T and an index e, we want to find a
subtree T ′ of T which forces α 6= ϕD

e , if ϕD
e is total. Pick any two different even-

nodes τ0 and τ1 on T . One of them must be incompatible with ϕD
e if it is total.

Without loss of generality we can assume that τ0 is incompatible with ϕD
e , that is,

∃x(τ0(x) ↓6= ϕD
e (x) ↓); then we take T ′

= FS(T, σ0) and again by Lemma 3.4 and
the Padding Lemma we are done.

3.5 Forcing α to be minimal Now given a special tree T , its witness function f
and an index e, we need to find a subtree of T to force Re; that is, either ϕα

e is not
total, or it is recursive, or α ≤T ϕα

e . Note that Posner’s Lemma is usually used to
show that the nonrecursiveness of α is guaranteed by a splitting tree construction.
Here this is automatically guaranteed by the requirements, because hyperimmune
degrees are not recursive.

As in a standard minimal degree construction, we first try to ask whether there
are e-splitting pairs above every node, that is, whether we can construct a splitting
subtree of T . However, we need to be careful here. Some nodes on T are leaves, and
these nodes cannot be extended on T . For example, we start from the root of T and
search for two nodes above it which form an e-splitting pair. If the two nodes we
find are leaves, then we cannot extend them at the next step.

A possible way to solve this problem is to ask a similar but more specific question.
First let E = Even ∩ dom(T ), that is, the collection of even strings in the domain of
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T , then ask whether the following is true:

∃σ ∈ E ∀σ0, σ1 ⊃ σ, σ0, σ1 ∈ E[¬(T (σ0)|eT (σ1))].

Intuitively, property 2 of special trees guarantees that T (σ0) and T (σ1) are not ter-
minal nodes, so we can continue to construct our subtree, if the answer is no.

Now if the answer is yes, then we can find an even σ in the domain of T such that
for any even σ0, σ1 above σ , T (σ0) and T (σ1) do not form an e-splitting. For any α
an infinite path on FS(T, σ ), if ϕα

e is total, then we can compute it as follows: Given
x , we search above σ for the first even σ ′ such that ϕ

T (σ ′)
e (x) ↓ and output that value.

We can always find one because ϕα
e (x) ↓. We cannot find an answer different from

ϕα
e (x) because of the positive answer to our question.

If the answer is no, then we know that for any even σ in the domain, we can
find two even strings σ0, σ1 such that T (σ0) and T (σ1) form an e-splitting. So we
can easily construct a splitting tree. In addition, we want the splitting tree to be
recursively unbounded. We guarantee this by arranging for f ′(n) = 2n to be a
witness function as in the following construction. First, put T ′(∅) = T (∅). By the
negative answer to our question we can find two even strings σ0, σ1 (above ∅) such
that T (σ0) and T (σ1) e-split. Now find t such that ϕt = ϕ0 and f (t) bounds |σ0|

and |σ1|. Extend σ0 and σ1, respectively, to σ ′

0 and σ ′

1 with |σ ′

0| = |σ ′

1| = f (t). Let
T ′(0) = T (σ ′

0 ∗ 0) and T ′(1) = T (σ ′

1 ∗ 1).
On the 0 side, search above σ ′

0 ∗ 0 for even strings σ00 ⊃ σ ′

0 ∗ 0 ∗ 0 and
σ01 ⊃ σ ′

0 ∗ 0 ∗ 1 such that T (σ00)|eT (σ01) and let T ′(0i) = T (σ0i ) for i = 0, 1. (We
can find such two even strings because of our convention that ϕσ

e (x) ↓ only if for all
y < x , ϕσ

e (y) ↓.)
On the 1 side, we wait for ϕ0(|T (σ ′

1 ∗ 1)|) = ϕt (|T (σ ′

1 ∗ 1)|) to converge. If it
doesn’t, T ′(1) is a leaf. If it converges, then we know that T (σ ′

1 ∗1∗ i) ⊃ T (σ ′

1 ∗1)∗
(ϕ0(|T (σ ′

1 ∗ 1)|) + i + 1). Note that σ ′

1 ∗ 1 ∗ 0 and σ ′

1 ∗ 1 ∗ 1 are even, so we can
search above them for even strings σ10 ⊃ σ ′

1 ∗ 1 ∗ 0, σ11 ⊃ σ ′

1 ∗ 1 ∗ 1 such that
T (σ10)|eT (σ11). Then let T ′(1i) = T (σ1i ) for i = 0, 1.

Inductively, suppose we have defined T ′(σ ) = T (σ ∗) for |σ | = 2n, and σ ∗ is
even. We find two even strings σ0, σ1 extending σ ∗ such that T (σ0)|eT (σ1), and
pick t such that ϕt = ϕn and f (t) bounds the lengths of σ0 and σ1. Then we extend
σ0 and σ1, respectively, to σ ′

0 and σ ′

1 with |σ ′

0| = |σ ′

1| = f (t). Now we define
T ′(σ ∗ i) = T (σ ′

i ∗ i) for i = 0, 1. The rest of the construction here is similar to the
one in the base case. It is easy to see that T ′ is special and recursively unbounded
witnessed by f ′(n) = 2n. This finishes the construction and the proof. �

4 Tree Systems

Next we construct an ANR 2-minimal degree. We use a tree construction to find a
string α of minimal degree. At the same time, we do another tree argument rela-
tivized to α to find a string β which is minimal over α.

Usually, such iterations are implemented with uniform trees (see [7, Chapter VI]).
Here we provide a different and more general approach. The intuition is to build a
“tree of trees” where “tree” refers to the construction of α and “trees” refers to the
construction of β.

A tree system is a pair of functions (T, S) where T is a partial recursive tree from
ω<ω to ω<ω and S is a recursive function defined on the range of T with values finite
trees mapping from a subset of 2<ω to ω<ω such that if τ ⊂ τ ′ are both in the range
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of T , then S(τ ′) is an extension of S(τ ). That is, S(τ ′) restricted to the domain of
S(τ ) is equal to S(τ ).

In this setting T is called a tree and S is called a system. We use σ to denote
strings in the domain of T , τ (and less frequently π ) to denote strings in the range of
T and the domain of S. We use R to denote finite trees in the range of S. We use µ
to denote strings in the domain of such an R and ρ (and less frequently η, ξ , or ζ ) to
denote strings in the range of such an R. We write lb(ρ) to denote the last bit of ρ,
that is ρ(|ρ| − 1).

In our proof we will construct tree systems with the following Properties:

1. For any σ , if T (σ ) ↓ then for any i ≤ |T (σ )| + 1, T (σ ∗ i) ↓⊃ T (σ ) ∗ i , and
T (σ ∗ i) ↑ for i > |T (σ )| + 1.

2. For any node τ on T , the maximum length of leaves on S(τ ) is 3|τ | + 1.
3. For any node τ on T , all leaves of S(τ ) are of length 3i + 1 for some i and

all leaves are images of odd strings. We call these leaves of length 3|τ | + 1
the top leaves on S(τ ), and the other leaves on S(τ ) the terminal leaves. In
addition, if S(τ )(µ) = ρ is a terminal leaf, then lb(µ) = lb(ρ) = 1.

4. For any infinite path α ∈ [T ], S(α) = ∪τ⊂α S(τ ) is a special tree (see Defini-
tion 3.2).

5. For any τ = T (σ ) and any even-node ρ on S(τ ), there are η0, η1 ∈ S(τ )
extending ρ which are top leaves of S(τ ) with lb(η0) = 0 and lb(η1) = 1.

We call such tree systems special. Property 1 assures that we can infinitely often
code some information into α. Properties 2 and 3 provide a convenient specific
framework. Property 4 is crucial: it allows us to “guess” whether something happens
or not as in our hyperimmune minimal degree construction. Property 5 would follow
from our construction but it is more convenient to make it explicit.

Before starting our main construction, we provide some technical lemmas about
special tree systems.

Lemma 4.1 Given a special tree system (T, S), if T ′ is a subtree of T which also
satisfies Property 1, and S′ is the restriction of S to the range of T ′, then (T ′, S′) is
also a special tree system.

Proof Immediate. �

We give an analog of the “full subtree” in the usual tree construction.

Definition 4.2 Given a tree system (T, S), τ = T (σ ) and ρ = S(τ )(µ), the full
subtree system (T ′, S′) of (T, S) above (σ, µ), is defined as follows: Let T ′ be the
usual full subtree of T above σ . For any π in the range of T ′, define S′(π) to be the
full subtree of S(π) above µ. We denote this T ′ by FSTS(T, S, σ, µ).

Intuitively, this is a full subtree of full subtrees. Now we show that with one easy
requirement, this full subtree system is special if the original tree system is special.

Lemma 4.3 Suppose (T, S) is a special tree system, τ = T (σ ), and µ is an even
string in the domain of S(τ ), then FSTS(T, S, σ, µ) is also a special tree system.

Proof Properties 1, 3, and 5 are immediate. Property 4 follows from Lemma 3.4
and finally Property 2 follows from Properties 3 and 4. �
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5 An ANR 2-Minimal Degree

Theorem 5.1 There is a 2-minimal ANR degree.

Proof We construct a sequence of special tree systems (Ti , Si ) with each one a
subtree system of the previous one; that is, Tn+1 is a subtree of Tn and for any τ in
the range of Tn+1, Sn+1(τ ) is a subtree of Sn(τ ). In the end, the Ti s will approximate
an infinite string α. That is to say, α is the only string in all [Ti ]. In addition, Si (α)
will approximate β in the same way. Our plan is to make deg(β) an ANR degree
minimal over the minimal degree deg(α).

We take λ(n, s) to be the standard approximation of the modulus function of K
with the number of changes in the column {λ(n, s)}s∈ω bounded by n+1. Notice that
in our construction of a hyperimmune minimal degree we could replace the partial
recursive ϕn used at level f (n) by any partial recursive function specified uniformly
in n. Relativizing this idea, when we construct a minimal cover β of α, we can code
in some partial α-recursive function infinitely often.

Now we construct an α which is bounded by f (n) = n + 1 and each value
α(n) will be regarded as a guess at the true number of changes in the corresponding
column {λ(n, s)}s∈ω. If we assume that infinitely often we can code the true number
of changes into α, then α computes a partial recursive function h(n) which infinitely
often equals the modulus function of K : for each n, we first read α(n), and then
run through the column {λ(n, s)}s∈ω looking for α(n) many changes. If we can find
such a position we output the value of λ(n, s) at that place, and if we cannot, the
computation diverges.

If β can infinitely often exceed the values of h(n) where it is equal to mK (n), then
deg(β) is ANR. One thing to worry about here is how to make sure that those places
where β exceeds h are the positions where h coincides with the modulus function
of K . The main difficulty in the proof is to find a framework within which we can
carry out this idea.

In our construction we place one more requirement on our tree systems:
6. For any τ on T and ρ a terminal leaf of length 3i + 1 on S(τ ), we have

lb(ρ) = 1 and |{s : s < |τ |, λ(i, s) 6= λ(i, s + 1)}| < τ(i). This im-
plies that, for any τ ′

⊃ τ on T such that ρ is no longer a leaf on S(τ ′),
|{s : s < |τ ′

|, λ(i, s) 6= λ(i, s + 1)}| ≥ τ(i).
Note that Lemmas 4.1 and 4.3 are still true with Property 6 added.

Again note that α being nonrecursive and β being strictly above α are both au-
tomatic: β is ANR while α is not ANR by Theorem 1.4, so deg(β) is not below
deg(α). In addition, deg(α) is strictly above 0 because otherwise deg(β) would be
an ANR minimal degree, contradicting Theorem 1.4.

5.1 Requirements First of all, we want α to be minimal.
Re: either ϕα

e is not total, or it is recursive, or α ≤T ϕα
e .

In addition, we require β to be minimal over α.

Pe: either ϕ
β
e is not total, or it is recursive in α, or β ≤T ϕ

β
e ⊕ α.

We guarantee array nonrecursiveness by the following:
Qn: there exists at least n distinct xs such that β(3x + 2) > mK (x).

Then β computes a function which is not dominated by mK . Therefore, it is ANR
by definition.
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The definition of forcing here is similar to that in Section 3: we say (T, S) forces
a requirement if for every α ∈ [T ] and every β ∈ [S(α)], the requirement holds for
α and β. Finally, α ≤T β is guaranteed by the initial tree system defined below.

5.2 Initial tree system (T0, S0) We define an initial tree system (T0, S0) in this
subsection. For simplicity we write (T, S) instead of (T0, S0).

T is rather simple. It is the restriction of the identity function to a recur-
sive domain defined as follows: ∅ is in the domain; if σ is in the domain then
σ ∗ 0, σ ∗ 1, . . . , σ ∗ (|σ | + 1) are exactly the immediate successors of σ in the
domain.

Given τ of length n in the range of T (and so in the domain of S), we define
S(τ ) = R as a finite tree as follows: The domain of R is a subset of 22|τ |+1. First let
R(∅) = ∅. Inductively, for any µ of length ≤ 2|τ | and R(µ) = ρ, if µ is even, then
put R(µ ∗ 0) = ρ ∗ 0 and R(µ ∗ 1) = ρ ∗ 1.

If |µ| = 2k + 1 and lb(µ) = 0, we put R(µ ∗ 0) = ρ ∗ τ(k) ∗ 0 and
R(µ ∗ 1) = ρ ∗ τ(k) ∗ 1. If lb(µ) = 1, then we search for the τ(k)th change in the
column {λ(k, s)}s∈ω up to s = |τ |. If we cannot find that many changes, then both
R(µ ∗ 0) and R(µ ∗ 1) diverge; if we can find such, then let x be the value of λ(k, t)
where t is the place we see the τ(k)th change, and let R(µ ∗ 0) = ρ ∗ τ(k) ∗ (x + 1)
and R(µ ∗ 1) = ρ ∗ τ(k) ∗ (x + 2).

It is easy to see that R is a finite tree and the maximum length of its leaves
is 3|τ | + 1. For every α ∈ [T ] and every β ∈ [S(α)], it is immediate that
∀x(α(x) = β(3x + 1)); hence α ≤T β. Intuitively, along any path on the tree S(τ ),
position 3i + 1 codes the (possible) number of changes, position 3i guesses whether
it can be found (1) or not (0), and position 3i + 2 codes a sufficiently large number,
if position 3i guesses that such number of changes happens and it is actually found.

Infinitely often Property 1 can be used to find a full subtree of T (with the induced
“subsystem” of S) to code the “correct number of changes along a column” into α.
So in β we can code in a number greater than the corresponding value of the modulus
function of K .

5.3 Forcing α to be minimal Suppose we are given (T, S) and an index e, and we
need to find a subtree system (T ′, S′) of (T, S) to force Re. By Lemma 4.1 we only
need to find such a subtree T ′ of T which satisfies Property 1 and take S′ to be the
corresponding restriction.

As usual we ask whether the following holds (for simplicity we always let D be
the domain of T ):

∃σ ∈ D∀σ0, σ1 ⊃ σ, σ0, σ1 ∈ D(¬(T (σ0)|eT (σ1))).

If the answer is yes, then we take T ′
= FS(T, σ ). It is routine to argue that ϕα

e is
either not total or recursive for every α ∈ [T ′

].
If the answer is no, then we do the following construction. Start with T ′(∅) =

T (∅) = τ . Now, in order to satisfy Property 1, we need to find |τ | + 2 pairwise
e-splitting nodes on T , each extending one of T (i) ⊃ τ ∗ i for i = 0, 1, . . . , |τ | + 1,
respectively. In the inductive step we need a similar argument; that is, once we have
defined T ′(σ ) = τ = T (σ ′), then we need to find |τ | + 2 pairwise e-splitting nodes
on T , each extending one of T (σ ′

∗ i) ⊃ τ ∗ i for i = 0, 1, . . . , |τ | + 1, respectively.
We start with these nodes T (σ ′

∗ i). Each time we pick one pair of them, and using
the splitting property we can extend these two strings on T to make them e-split. We
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can iterate this process for each pair. Finally, we end up with pairwise e-splitting
extensions and let them be T ′(σ ∗ i) for i = 0, 1, . . . , |τ | + 1. This construction
gives us an e-splitting subtree T ′ of T and it is easy to argue that α ≤T ϕα

e .

5.4 Forcing β to be ANR Given (T, S) we want to code a sufficiently large num-
ber into β; that is, we need to find a new n such that β(3n + 2) ≥ mK (n). By
Property 5 we know that there exist τ = T (σ ) and ρ = S(τ )(µ) a top leaf of
S(τ ) with lb(ρ) = 1. Then, by Property 1, we know that τi = T (σ ∗ i) ⊃ τ ∗ i ,
i = 0, 1, . . . , |τ | + 1 are exactly the successor nodes of τ . Intuitively, they are
guessing that the |τ |th column of λ has i many changes, respectively, for each i .

Then we take i to be the actual number of changes through that column; that is,
we let i = |{s : λ(|τ |, s) 6= λ(|τ |, s + 1)}|. That is to say, T (σ ∗ i) = τi ⊃ τ ∗ i
has the correct guess at the number of changes in this column. Also let t be the
position in that column where we see the i th change; that is, t is the least such that
λ(|τ |, t ′) = λ(|τ |, t) for all t ′ > t .

Note that by Property 3, µ ∗ 0 is an even string. By the construction of the ini-
tial tree and Property 6, we know that for all T (σ ∗) = τ ∗

⊃ τi with length ≥ t ,
S(τ ∗)(µ ∗ 0) ⊃ ρ ∗ i ∗ |mK (|τ |) + 1| or ρ ∗ i ∗ |mK (|τ |) + 2|. Pick any such σ ∗ and
take (T ′, S′) = FSTS(T, S, σ ∗, µ ∗ 0). By Lemma 4.3, this tree system is special
and it is easy to see that it forces β to have one more position n where β(3n + 2) is
greater than mK (n).

5.5 Forcing β to be minimal over α In this subsection we will present the main
splitting construction. Suppose we are given a special tree system (T, S) and an
index e. We need to find a special subtree system (T ′, S′) which forces Pe; that is,
either ϕ

β
e is not total, or it is recursive in α, or β ≤T ϕ

β
e ⊕ α.

Notice that in the requirement above, if we could force β ≤T ϕ
β
e , then we would

make β a strong minimal cover over α, but this cannot happen because no ANR
degree can be a strong minimal cover (for example, by [3, Theorem 2.5]).

Now we ask the following key question (note that D is the domain of T and we
let E(τ ) be the set of all even strings in the domain of S(τ )):

∃σ ∈ D∃µ ∈ E(T (σ ))∀σ ′
⊃ σ, σ ′

∈ D∀µ0, µ1 ⊃ µ, µ0, µ1 ∈ E(T (σ ′))

[¬(S(T (σ ′))(µ0)|e S(T (σ ′))(µ1))].

That is, we ask whether there is a node τ = T (σ ) and an even-node ρ = S(τ )(µ)
such that for any τ ′

= T (σ ′) extending τ on T , there is no e-splitting pair of even-
nodes on S(τ ′) extending ρ.

If the answer is yes, then we pick a witness pair (σ, µ), take (T ′, S′) =

FSTS(T, S, σ, µ) and claim that if ϕ
β
e is total, then it is recursive in α. To compute

ϕ
β
e (x), we simply search on the tree S′(α) for an even-node η which makes ϕ

η
e (x)

converge. We must find an answer because β ∈ [S(α)] and ϕ
β
e is total. We cannot

find an answer different from ϕ
β
e (x) by the positive answer to our key question.

Now if the answer is no, then we know that

(†) : ∀σ ∈ D∀µ ∈ E(T (σ ))∃σ ′
⊃ σ, σ ′

∈ D∃µ0, µ1 ⊃ µ, µ0, µ1 ∈ E(T (σ ′))

[S(T (σ ′))(µ0)|e S(T (σ ′))(µ1)].
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We will use this property to construct a “splitting” subtree system (T ′, S′). Here by
“splitting” we mean the following:

(∗) : For all τ on T ′, all leaves of S′(τ ) pairwise e-split.

First we argue that with property (∗) the requirement is satisfied. From α one can
compute S′(α) and β is a path on S′(α). (∗) guarantees e-splitting so ϕ

β
e can pick a

unique leaf which is an initial segment of β, on S′(τ ) for every τ ⊂ α. This proves
that β ≤T ϕ

β
e ⊕ α.

To finish the proof we will provide such a splitting subtree system construc-
tion; that is, we construct a subtree system (T ′, S′) which is special and has prop-
erty (∗). To find T ′(∅), first, by (†), we search above ∅ for a σ such that there
exist two e-splitting even-nodes ρ0 and ρ1 on S(T (σ )). Then by Property 5 we
know that on the tree S(T (σ )), ρ0 and ρ1 have extensions η0 and η1, respectively,
such that lb(η0) = 0, lb(η1) = 1, and both are top leaves of S(T (σ )). Then
define T ′(∅) = T (σ ) and S′(T ′(∅)) to be the subtree of S(T (σ )) defined by
S′(T ′(∅))(∅) = S(T (σ ))(∅), S′(T ′(∅))(0) = η0, and S′(T ′(∅))(1) = η1.

Now suppose we have defined T ′(σ ′) = τ = T (σ ) and S′(τ ) a subtree of S(τ ).
We need to define T ′(σ ′

∗ i) ⊃ T (σ ∗ i) for each i ∈ {0, 1, . . . , |τ | + 1} and define
the corresponding S′(T ′(σ ′

∗ i)) with pairwise splitting leaves. The good thing is
that we only need e-splitting for leaves on each S′(T ′(σ ′

∗ i)) separately but not for
all leaves on every tree altogether. As we know the number i from α in the end, we
only need to find e-splitting extensions separately for each i .

Suppose ρ0, ρ1, . . . , ρn are all leaves on S′(τ ). Note that by induction, they
pairwise e-split. Let X = {ρ0, ρ1, . . . , ρk} be the set of all top leaves and
Y = {ρk+1, ρk+2, . . . , ρn} be the set of all terminal leaves on S′(τ ). Some of
the ρ j s in X are terminal leaves on S(T (σ ∗ i)) and we can put them aside (into Y )
at this time. Now let Z = {ρ0, ρ1 . . . , ρl} be the set of all leaves on S′(τ ) that are
not terminal leaves on S(T (σ ∗ i)).

The aim of the construction is to find τi ⊃ T (σ ∗ i) ⊃ τ ∗ i on T such that for
each ρ j ∈ Z , ρ j = S′(τ )(µ j ) (note that |µ j | is always odd by Property 3), one
can find on S(τi ) six appropriate nodes defined to be S′(τi )(µ j ∗ 0), S′(τi )(µ j ∗ 1),
S′(τi )(µ j ∗ 00), S′(τi )(µ j ∗ 01), S′(τi )(µ j ∗ 10), and S′(τi )(µ j ∗ 11). More-
over, the latter four are top leaves of S(τi ) and they have the desired e-splitting
property. For each ρ j ∈ Z , ρ j = S′(τ )(µ j ) = S(T (σ ))(µ′

j ) we know that
ρ′

j = S(T (σ ∗ i))(µ′

j ∗ 0) is an even-node on S(T (σ ∗ i)), hence also an even-node
on S(π) for any π ⊃ T (σ ∗ i).

Now start from ρ′

0. By (†) we know that there is a π0 ⊃ T (σ ∗ i) and two even-
nodes ξ1

0 , ξ1
0 on S(π0) extending ρ′

0 that e-split. Using the same idea, we apply (†)

twice to get π2 ⊃ π1 ⊃ π0 such that both ξ0
0 and ξ1

0 have two even-node extensions
ξ00

0 , ξ01
0 and ξ10

0 , ξ11
0 , respectively.

Now on S(π2), some nodes in Y will become nonterminal and we need to move
them into Z . Pick the next node in Z , say ρ1. ρ′

1 defined above is also an even-node
in S(π2) and similarly by applying (†) three times one can get π5 ⊃ π4 ⊃ π3 ⊃ π2
and even-nodes ξ0

1 , ξ1
1 , ξ00

1 , ξ01
1 , and ξ10

1 and ξ11
1 extending ρ′

1 (to be explicit, the
subscript 1 refers to ρ′

1 and superscripts 0, 1, 00, 01, 10, 11 refer to their positions in
the relative 2-level tree structure extending ρ′

1).
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Again some nodes in Y will appear nonterminal at this level and we need to move
them into Z . There are only finitely many leaves on S′(τ ) at the beginning. So we
can iterate this process for all ρ j ∈ Z and finally end up with π = π3t−1 for some t .
On S(π) each ρ′

j similarly has six extensions with appropriate e-splitting properties,
and these nodes in Y are still terminal leaves. Now define T ′(σ ∗ i) = π , and define
R = S′(π) extending S′(τ ) as follows: For each ρ j ∈ Z , ρ j = S′(τ )(µ j ), define
S′(π)(µ j ∗ 0) = ξ0

j and S′(π)(µ j ∗ 1) = ξ1
j .

By Property 5 we can find a top leaf ζmn
j on S(π) extending ξmn

j (m, n ∈ {0, 1})
such that lb(ζmn

j ) = n. Then we define S′(π)(µ j ∗ m ∗ n) = ζmn
j for m, n ∈ {0, 1}.

This finishes the splitting subtree system construction and it is not difficult to see that
the subtree system (T ′, S′) we constructed is a special tree system. �

6 Appendix

Here we prove a proposition mentioned in the Introduction.

Proposition 6.1 Suppose a is GL2 and b is a minimal cover of a. Then b is also
GL2 if either of the following holds:

1. b < a′, or
2. b is hyperimmune-free relative to a; that is, every function recursive in b is

dominated by a function recursive in a.

Proof In the first case, by a relativized version of [5, Corollary 1], we know that if
b < a′ then b is L2 relativized to a. That means b′′

= a′′
= (a ∨ 0′)′ ≤ (b ∨ 0′)′.

Therefore, b is GL2.
In the second case, it is well known [5, Lemma 1] that a being GL2 is equivalent to

there being a function g recursive in a∨0′ which dominates every function recursive
in a. Then this function g also dominates every function recursive in b and, of course,
g ≤T a ∨ 0′

≤ b ∨ 0′. So b is also GL2. �
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