Skip to main content
Log in

Theory of Dynamical Systems and the Relations Between Classical and Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We give a review of some works where it is shown that certain quantum-like features are exhibited by classical systems. Two kinds of problems are considered. The first one concerns the specific heat of crystals (the so called Fermi–Pasta–Ulam problem), where a glassy behavior is observed, and the energy distribution is found to be of Planck-like type. The second kind of problems concerns the self-interaction of a charged particle with the electromagnetic field, where an analog of the tunnel effect is proven to exist, and moreover some nonlocal effects are exhibited, leading to a natural hidden variable theory which violates Bell's inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. L. Galgani and A. Scotti, Phys. Rev. Lett. 28, 1173 (1972).

    Google Scholar 

  2. L. Galgani and A. Scotti, “Recent progress in classical nonlinear dynamics,” Rivista Nuovo Cimento 2, 189 (1972).

    Google Scholar 

  3. E. Fermi, J. Pasta, and S. Ulam, Los Alamos Report, No. LA-1940 (1955); later published in E. Fermi, Collected Papers (University of Chicago Press, Chicago, 1965), and Lect. Appl. Math. 15, 143 (1974).

    Google Scholar 

  4. L. Galgani, C. Angaroni, L. Forti, A. Giorgilli, and F. Guerra, Phys. Lett. A 139, 221 (1989).

    Google Scholar 

  5. D. Bambusi and L. Galgani, Ann. Inst. H. Poincaré, Phys. Théor. 58, 155–171 (1993).

    Google Scholar 

  6. D. Bambusi and D. Noja, Lett. Math. Phys. 37, 449 (1996).

    Google Scholar 

  7. D. Noja and A. Posilicano, Ann. Inst. H. Poincaré, Phys. Théor. 71, 425 (1999).

    Google Scholar 

  8. A. Carati, Found. Phys. 28, 843–853 (1998); see also Math. Rev. 2000a:78006.

    Google Scholar 

  9. A. Carati, P. Delzanno, L. Galgani, and J. Sassarini, Nonlinearity 8, 65–76 (1995).

    Google Scholar 

  10. A. Carati and L. Galgani, Nonlinearity 6, 905–914 (1993).

    Google Scholar 

  11. A. Carati and L. Galgani, Nuovo Cimento B 114, 489–500 (1999).

    Google Scholar 

  12. J. O. Hirschfelder, C. H. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1965).

    Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1962).

    Google Scholar 

  14. A. Carati and L. Galgani, Physica A 280, 106–114 (2000).

    Google Scholar 

  15. A. Carati and L. Galgani, “Einstein's nonconventional conception of the photon, and the modern theory of dynamical system,” in Chance in Physics, D. Dürr, G. Ghirardi, and N. Zanghi, eds. (Springer, Berlin, to appear).

  16. G. Gallavotti, Statistical Mechanics: A Short Treatise (Springer, Berlin, 1999).

    Google Scholar 

  17. E. Fermi, Nuovo Cimento 26, 105 (1923).

    Google Scholar 

  18. G. Benettin, G. Ferrari, L. Galgani, and A. Giorgilli, Nuovo Cimento B 72, 137 (1982).

    Google Scholar 

  19. F. M. Izrailev and B. V. Chirikov, Sov. Phys. Dokl. 11, 30 (1966).

    Google Scholar 

  20. L. Boltzmann, Nature 51, 413 (1895). L. Boltzmann, Lectures on Gas Theory (University of California Press, 1966), Sec. 45.

    Google Scholar 

  21. G. Benettin, L. Galgani, and A. Giorgilli, Nature 311, 444 (1984).

    Google Scholar 

  22. J. Jäckle, Rep. Prog. Phys. 49, 171–231 (1986). J. Ja ckle, Physica A 162, 377–404 (1990).

    Google Scholar 

  23. A. Carati and L. Galgani, J. Stat. Phys. 94, 859 (1999).

    Google Scholar 

  24. G. Benettin, L. Galgani, and A. Giorgilli, Comm. Math. Phys. 121, 557 (1989).

    Google Scholar 

  25. L. Galgani, A. Giorgilli, A. Martinoli, and S. Vanzini, Physica D 59, 334–348 (1992).

    Google Scholar 

  26. G. Benettin, L. Galgani, and A. Giorgilli, Phys. Lett. A 120, 23 (1987).

    Google Scholar 

  27. A. Carati and L. Galgani, Phys. Rev. E 61, 4791 (2000).

    Google Scholar 

  28. M. Planck, Verh. D. Phys. Ges. 2 (1900); reprinted in H. Kangro, Planck's Original Papers in Quantum Physics (Taylor 6 Francis, London, 1972).

  29. A. Einstein, Phys. Z. 10, 185 (1909).

    Google Scholar 

  30. A. Einstein, Contribution to the 1911 Solvay Conference, in The Collected Papers of A. Einstein (Princeton University Press, Princeton, 1993), Vol. 3, No. 26.

    Google Scholar 

  31. O. Baldan and G. Benettin, J. Stat. Phys. 62, 201 (1991). G. Benettin, A. Carati, and P. Sempio, J. Stat. Phys. 73, 175 (1993).

    Google Scholar 

  32. G. Benettin, A. Carati, and G. Gallavotti, Nonlinearity 10, 479 (1997).

    Google Scholar 

  33. A. Ponno, L. Galgani, and F. Guerra, Phys. Rev. E 61, 7081 (2000).

    Google Scholar 

  34. F. Bonechi and S. De Bievre, “Exponental mixing and log h time scales in quantized hyperbolic maps on the torus,” mparc 99–381.

  35. D. Bambusi, S. Graffi, and T. Paul, Asymptotic Analysis 21, 149–160 (1999).

    Google Scholar 

  36. L. Galgani, in Non-Linear Evolution and Chaotic Phenomena, G. Gallavotti and P. F. Zweifel, eds. (NATO ASI Series R71B, Vol. 176) (Plenum, New York, 1988).

    Google Scholar 

  37. H. Poincarè, J. Phys. Thè or. Appl. 5, 5–34 (1912), in Oeuvres IX, pp. 626–653.

    Google Scholar 

  38. Physics at the British Association, Nature 92, 304–309 (1913).

    Google Scholar 

  39. P. P. Ewald, Bericht über die Tagung der British Association in Birmingham (10-17 September), Phys. Z. 14, 1297 (1913); see especially p. 1298.

    Google Scholar 

  40. N. O. Birge and S. R. Nagel, Phys. Rev. Lett. 54, 2674 (1985). N. O. Birge, Phys. Rev. B 34, 1631 (1986).

    Google Scholar 

  41. A. Einstein, Ann. der Phys. 22, 180 (1907).

    Google Scholar 

  42. C. Cercignani, L. Galgani, and A. Scotti, Phys. Lett. A 38, 403 (1972).

    Google Scholar 

  43. L. Galgani, in Stochastic Processes in Classical and Quantum Systems, S. Albeverio, G. Casati, and D. Merlini, eds., pp. 269–277 (Lecture Notes in Physics, Vol. 262) (Springer, Berlin, 1986).

    Google Scholar 

  44. M. Abraham, Ann. Phys. (Leipzig) 10, 105 (1903).

    Google Scholar 

  45. P. A. M. Dirac, Proc. Royal Soc. (London) A 167, 148–168 (1938).

    Google Scholar 

  46. P. A. M. Dirac, Ann. Inst. Poincaré9, 13 (1938).

  47. R. P. Feynman, The Feynman Lectures on Physics, Vol. 2 (Addison-Wesley, Reading, 1964).

    Google Scholar 

  48. S. Coleman and R. E. Norton, Phys. Rev. 125, 1422–1428 (1962).

    Google Scholar 

  49. M. Bertini, D. Noja, and A. Posilicano, “Quantum electrodynamics of point particles in the dipole approximation,” in preparation.

  50. E. Nelson, Quantum Fluctuations (Princeton University Press, Princeton, 1985).

    Google Scholar 

  51. E. Nelson, in Stochastic Processes in Classical and Quantum Systems (Ascona, 1985) (Lecture Notes in Physics, Vol. 262) (Springer, Berlin, 1986), pp. 438–469. E. Nelson, in E cole d'E te de Probabilite s de Saint-Flour XVXVII (1985-1987) (Lecture Notes in Mathematics, Vol. 1362) (Springer, Berlin, 1988), pp. 427–450.

    Google Scholar 

  52. B. Ruf and P. N. Srikanth, Rev. Math. Phys., in print.

  53. J. K. Hale and A. P. Stokes, J. Math. Phys. 3, 70 (1962).

    Google Scholar 

  54. J. S. Bell, “Einstein Podolsky Rosen Experiments,” in Proceedings, Frontier Problems in High-Energy Physics, Pisa, 1976; reprinted in J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987); see note 24.

    Google Scholar 

  55. M. Esfeld, Stud. Hist. Phil. Mod. Phys. B 30, 155 (1999).

    Google Scholar 

  56. E. C. G. Stueckelberg, Helv. Phys. Acta 14, 588–594 (1941). R. P. Feynman, Phys. Rev. 74, 939 (1948).

    Google Scholar 

  57. C. J. Eliezer, Proc. Cambr. Phil. Soc. 39, 173 (1943).

    Google Scholar 

  58. A. Carati, “An extension of Eliezer's theorem on the Abraham Lorentz Dirac equation,” in preparation.

  59. J. De Luca, Phys. Rev. Lett. 80, 680 (1998).

    Google Scholar 

  60. G. 't Hooft, Class. Quantum Grav. 16, 3263–3279 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carati, A., Galgani, L. Theory of Dynamical Systems and the Relations Between Classical and Quantum Mechanics. Foundations of Physics 31, 69–87 (2001). https://doi.org/10.1023/A:1004103921290

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004103921290

Keywords

Navigation