Skip to main content
Log in

The measurement statistics interpretation of quantum mechanics: Possible values and possible measurement results of physical quantities

  • Part I. Invited Papers Dedicated To Peter Mittelstaedt
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Starting with the Born interpretation of quantum mechanics, we show that the quantum theory of measurement, supplemented by the strong law of large numbers, leads to a measurement statistics interpretation of quantum mechanics. A probabilistic characterization of the spectrum of a physical quantity is given, and an analysis of the notions of possible values and possible measurement results is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Gleason, “Measures on the closed subspaces of a Hilbert space,”J. Math. Mech. 6, 885–893 (1957).

    Google Scholar 

  2. G. Ludwig,Foundations of Quantum Mechanics, Vol. 1 (Springer, Heidelberg, 1983).

    Google Scholar 

  3. G. Ludwig,Foundations of Quantum Mechanics, Vol. 2 (Springer, Heidelberg, 1983).

    Google Scholar 

  4. P. Mittelstaedt,Philosophische Probleme der modernen Physik (Bibliographisches Institut, Mannheim, 1976).

    Google Scholar 

  5. P. Mittelstaedt,Quantum Logic (Reidel, Dordrecht, Holland, 1978).

    Google Scholar 

  6. P. Mittelstaedt,Sprache und Realität in der modernen Physik (Bibliographisches Institut, Mannheim, 1986).

    Google Scholar 

  7. E.-W. Stachow, “Der quantentheoretische Wahrscheinlichkeitskalkül,”Grundlagen-probleme der modernen Physik, J. Nitsch, J. Pfarr, and E.-W. Stachow, eds. (Bibliographisches Institut, Mannheim, 1981), pp. 271–305.

    Google Scholar 

  8. C. Piron,Foundations of Quantum Physics (Benjamin, Reading, Massachusetts, 1976).

    Google Scholar 

  9. E. Beltrametti and G. Cassinelli,The Logic of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1981).

    Google Scholar 

  10. E. B. Davies,Quantum Theory of Open Systems (Academic Press, London, 1976).

    Google Scholar 

  11. E. Beltrametti and S. Bugajski, “Two questions on quantum mixtures,” in preparation.

  12. K. Ylinen, “On a theorem of Gudder on joint distributions of observables,”Symposium on the Foundations of Modern Physics, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1985), pp. 691–694.

    Google Scholar 

  13. N. Dunford and J. T. Schwartz,Linear Operators, Part 1 (Interscience, New York, 1958).

    Google Scholar 

  14. M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. 1 (Academic, New York, 1972).

    Google Scholar 

  15. G. Birkhoff,Lattice Theory (American Math. Soc. Colloq. Publ., Vol. XXV), 3rd edn., 3rd printing, 1979.

  16. B. C. van Fraassen, “Relative frequencies,”Synthese 34, 133–166 (1977).

    Google Scholar 

  17. B. C. van Fraassen, “Foundations of probability: a modal frequency interpretation,” inProblems in the Foundations of Physics (LXXII Corso, Soc. Italiana di Fisica, Bologna, Italy, 1979), pp. 344–394.

    Google Scholar 

  18. E. Beltrametti, G. Cassinelli, and P. Lahti, “Unitary measurements of discrete quantities in quantum mechanics,” submitted for publication inJ. Math. Phys.

  19. J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955); original German text published in 1932.

    Google Scholar 

  20. P. Busch and P. Lahti, “Completely positive instruments and measurements,” manuscript, 1989.

  21. M. Ozawa, “Quantum measuring process of continuous observables,”J. Math. Phys. 25, 79–87 (1984).

    Google Scholar 

  22. D. Finkelstein, “The logic of quantum physics,”Trans. N.Y. Acad. Sci., pp. 621–637 (1963).

  23. J. Hartle, “Quantum mechanics of individual systems,”Am. J. Phys. 36, 704–712 (1968).

    Google Scholar 

  24. N. Graham, “The measurement of relative frequency,” inThe Many-Worlds Interpretation of Quantum Mechanics, B. S. DeWitt and N. Graham, eds. (Princeton University Press, Princeton, 1973), pp. 229–253.

    Google Scholar 

  25. W. Ochs, On the strong law of large numbers in quantum probability theory,”J. Philos. Logic 6, 473–480 (1977).

    Google Scholar 

  26. N. Dunford and J. T. Schwartz,Linear Operators, Part 3 (Interscience, New York, 1971).

    Google Scholar 

  27. P. Busch and P. Lahti, “On various joint measurements of position and momentum observables in quantum theory,”Phys. Rev. D 29, 1634–1646 (1984).

    Google Scholar 

  28. P. Busch and P. Lahti, “The determination of the past and the future of a physical system in quantum mechanics,”Found. Phys. 19, 633–678 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassinelli, G., Lahti, P.J. The measurement statistics interpretation of quantum mechanics: Possible values and possible measurement results of physical quantities. Found Phys 19, 873–890 (1989). https://doi.org/10.1007/BF01889303

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01889303

Keywords

Navigation