Skip to main content
Log in

Influence of chromatin molecular changes on RNA synthesis during embryonic development

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Two aspects of the chromatin repeat length (r t) are discussed: (i) Why is r t, longer for slowly dividing cells than in rapidly dividing cells?, and (ii) Why is the temporal evolution of r ta decreasing function of time (t) in mammalian cortical neurons, whereas it is an increasing function of t for granule cells around the time of birth? These questions are discussed in terms of a hypothesis which assumes a correlation between deoxyribonucleic acid (DNA) packaging, transcription, and replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bird, A.P. (1986). CpG-Rich islands and the function of DNA methylation. Nature 321: 209–213.

    Google Scholar 

  • Brown, S.W. (1966). Heterochromatin. Science 151: 417–425.

    Google Scholar 

  • Burhans, W.C., L.T. Vassilev, M.S. Caddie, N.H. Heintz and M.L. DePamphilis (1990). Identification of an origin of bidirectional DNA replication in mammalian chromosomes. Cell 62: 955–965.

    Google Scholar 

  • Callan, H.G. (1972). Replication of DNA in the chromosomes of eukaryotes. Proc. R. Soc. Lond. B181: 19–41.

    Google Scholar 

  • Chambon, P. (1978). Summary: The molecular biology of the eukaryotic genome is coming of age.- Cold Spring Harbor Symp. Quant. Biol. 42: 1209–1234.

    Google Scholar 

  • Chela-Flores, J. (1987). Towards a collective biology of the gene. J. Theor. Biol. 126: 127–136.

    Google Scholar 

  • Chela-Flores, J. and {auR.L. Migoni} (1990). CG methylation in DNA transcription. Int. J. theor. Phys. 29: 853–862.

    Google Scholar 

  • Chela-Flores, J. (1992) Towards the molecular basis of polymerase dynamics. J. theor. Biol. (Scheduled for the February issue).

  • Darnell, J.E. (1982). Variety in the level of gene control in eukaryotic cells. Nature 297: 365–371.

    Google Scholar 

  • DePamphilis, M.L. (1988). Transcriptional elements as components of eukaryotic origins of DNA replication. Cell 52: 635–638.

    Google Scholar 

  • Edgar, B.A. and G. Schubinger (1986). Parameters controlling transcriptional activation during early Drosophila development. Cell 44: 871–877.

    Google Scholar 

  • Falaschi, A., G. Biamonti, F. Cobianchi, E. Csordas-Toth, G. Faulkner, M. Giacca, D. Pedacchia, G. Perini, S. Riva and C. Tribioli (1988). Presence of transcription signals in two putative DNA replication origins of human cells. Biochim. Biophys. Acta 951: 430–442.

    Google Scholar 

  • Felsenfeld, G. (1992). Chromatin as an essential part of the transcriptional mechanism. Nature 355: 219–224.

    Google Scholar 

  • Foe, V.E. (1978). Modulation of ribosomal RNA synthesis in Oncopeltus fasciatus: An electron microscopic study of the relationship between changes in chromatin structure and transcriptional activity. Cold Spring Harbor Symp. Quant. Biol. 42: 723–740.

    Google Scholar 

  • Jacobson, M. (1978). Developmental Neurobiology. 2nd ed. New York: Plenum Press. 57–114.

    Google Scholar 

  • Jaeger, A.W. and C.C. Kuenzle (1982). The chromatin repeat length of brain cortex and cerebellar neurons changes concomitant with terminal differentiation. EMBO J. 1: 811–816.

    Google Scholar 

  • Kornberg, A. (1988). DNA replication. J. biol. chem. 263: 1–4.

    Google Scholar 

  • Laskey, R.A., M.P. Fairman and J.J. Blow (1989). S phase of the cell cycle. Science 246: 609–614.

    Google Scholar 

  • Lyon, M.F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190: 372–373.

    Google Scholar 

  • Lyon, M.F. (1968). Chromosomal and subchromosomal inactivation. Ann. Rev. Genet. 2: 31–52.

    Google Scholar 

  • McGhee, J.D. and G. Felsenfeld (1980). Nucleosome structure. Ann. Rev. Biochem. 49: 1115–1156.

    Google Scholar 

  • Rakic, P. (1972). Mode of cell migration to the superficial layer of fetal monkey neocortex. J. Comp. Neurol. 145: 61–84.

    Google Scholar 

  • Rakic, P. and R.L. Sidman (1973). Weaver mutant mouse cerebellum: Defective neuronal migration secondary to abnormality of Bergmann Glia. Proc. Natl. Acad. Sci. USA 70: 240–244.

    Google Scholar 

  • Rakic, P. (1981). Neuronal-glial interaction during brain development. Trends in NeuroSciences 4: 184–187.

    Google Scholar 

  • Ramón y Cajal, S. (1891). Sur la structure de l'écorce cérébrale de quelques mammifères. La Cellule 7: 125–178.

    Google Scholar 

  • Savic, A., P. Richman, P. Williamson and D. Poccia (1981). Alterations in chromatin structure during early sea urchin embryogenesis. Proc. Nail. Acad. Sci. USA 78: 3706–3710.

    Google Scholar 

  • Sperling, L. and M.C. Weiss (1980). Chromatin repeat length correlates with phenotypic expression in hepatoma cells, their didifferentiated variants, and somatic hybrids. Proc. Natl. Acad. Sci. USA 77: 3412–3416.

    Google Scholar 

  • Vignal, W. (1888). Recherches sur le développement des éléments des couches corticales an cerveau et du cervelet chez l' homme et les mammifères. Arch. Physiol. Norm Path. (Paris) 2: 228–254.

    Google Scholar 

  • Weisbrod, S. (1982). Active chromatin. Nature 297: 289–295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chela-Flores, J. Influence of chromatin molecular changes on RNA synthesis during embryonic development. Acta Biotheor 40, 41–49 (1992). https://doi.org/10.1007/BF00046550

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00046550

Keywords

Navigation