Skip to main content
Log in

The Laboratory Technology of Discrete Molecular Separation: The Historical Development of Gel Electrophoresis and the Material Epistemology of Biomolecular Science, 1945–1970

  • Published:
Journal of the History of Biology Aims and scope Submit manuscript

Abstract

Preparative and analytical methods developed by separation scientists have played an important role in the history of molecular biology. One such early method is gel electrophoresis, a technique that uses various types of gel as its supporting medium to separate charged molecules based on size and other properties. Historians of science, however, have only recently begun to pay closer attention to this material epistemological dimension of biomolecular science. This paper substantiates the historiographical thread that explores the relationship between modern laboratory practice and the production of scientific knowledge. It traces the historical development of gel electrophoresis from the mid-1940s to the mid-1960s, with careful attention to the interplay between technical developments and disciplinary shifts, especially the rise of molecular biology in this time-frame. Claiming that the early 1950s marked a decisive shift in the evolution of electrophoretic methods from moving boundary to zone electrophoresis, I reconstruct various trajectories in which scientists such as Oliver Smithies sought out the most desirable solid supporting medium for electrophoretic instrumentation. Biomolecular knowledge, I argue, emerged in part from this process of seeking the most appropriate supporting medium that allowed for discrete molecular separation and visualization. The early 1950s, therefore, marked not only an important turning point in the history of separation science, but also a transformative moment in the history of the life sciences as the growth of molecular biology depended in part on the epistemological access to the molecular realm available through these evolving technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abir-Am, Pnina G. 1982. ‹The Discourse of Physical Power and Biological Knowledge in the 1930s: A Reappraisal of the Rockefeller Foundation’s ‹Policy’ in Molecular Biology.’ Social Studies of Science 12: 341–382

    Article  Google Scholar 

  • Abir-Am, Pnina G. 1984. ‹Beyond Deterministic Sociology and Apologetic History: Reassessing the Impact of Research Policy upon New Scientific Disciplines (Reply to Fuerst, Bartels, Olby and Yoxen).’ Social Studies of Science 14: 252–263

    Article  Google Scholar 

  • Abir-Am, Pnina G. 1997. ‹The Molecular Transformation of Twentieth-Century Biology.’ John Krige, Dominique Pestre (eds.), Companion to Science in the Twentieth Century. London/New York:Routledge, pp. 495–524

    Google Scholar 

  • Baigrie, Brian S (ed.). 1996. Picturing Knowledge: Historical and Philosophical Problems Concerning the Use of Arts in Science. Toronto:University of Toronto Press

    Google Scholar 

  • Baird, Davis. 2004. Thing Knowledge: A Philosophy of Scientific Instruments. Berkeley, CA:University of California Press

    Google Scholar 

  • Bartels, Ditta. 1984. ‹The Rockefeller Foundation’s Founding Policy for Molecular Biology: Success or Failure?’ Social Studies of Science 14: 238–243

    Article  Google Scholar 

  • Bier, Milan (ed.). 1959. Electrophoresis: Theory, Method, and Applications. New York:Academic Press

    Google Scholar 

  • Bud, Robert. 1993. The Uses of Life: A History of Biotechnology. Cambridge:Cambridge University Press

    Google Scholar 

  • Cairns, John, Stent, Gunther S, Watson, James D (eds.). 1966. Phage and the Origins of Molecular Biology. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory

    Google Scholar 

  • Cetina, Karin K. 1999. Epistemic Cultures: How the Sciences Make Knowledge. Cambridge, MA:Harvard University Press

    Google Scholar 

  • Chiang, Howard H. 2007. ‹Bio-R/Evolution in Historiographic Perspective: Some Reflections on the History and Epistemology of Biomolecular Science.’ Crossroads: An Interdisciplinary Journal for the Study of History, Philosophy, Religion, and Classics 2: 4–13

    Google Scholar 

  • Consden, R, Gordon, AH. 1950. ‹A Study of the Peptides of Cystine in Partial Hydrolysates of Wool.’ Biochemical Journal 46: 8–20

    Google Scholar 

  • Consden, R, Kohn, J. 1959. ‹Cellulose Acetate as a Medium for Immunodiffusion.’ Nature 183: 1512–1513

    Article  Google Scholar 

  • Consden, R, Gordon, AH, Martin, AJP. 1944. ‹Qualitative Analysis of Proteins: A Partition Chromatographic Method Using Paper.’ Biochemical Journal 38: 224–232

    Google Scholar 

  • Consden, R, Gordon, AH, Martin, AJP. 1946. ‹Ionophoresis in Silica Jelly: A Method for the Separation of Amino-Acids and Pepties.’ Biochemical Journal 40: 33–41

    Google Scholar 

  • Consden, R, Gordon, AH, Martin, AJP. 1947. ‹The Identification of Lower Peptides in Complex Mixtures.’ Biochemical Journal 41: 590–596

    Google Scholar 

  • Consden, R, Gordon, AH, Martin, AJP. 1948. ‹Separation of Acidic Amino-Acids by Means of a Synthetic Anion Exchange Resin.’ Biochemical Journal 42: 443–447

    Google Scholar 

  • Consden, R, Gordon, AH, Martin, AJP. 1949. ‹A Study of the Acidic Peptides Formed on the Partial Acid Hydrolysis of Wool.’ Biochemical Journal 44: 548–560

    Google Scholar 

  • Coolidge, Thomas B. 1939. ‹A Simple Cataphoresis Apparatus.’ Journal of Biological Chemistry 127: 551–553

    Google Scholar 

  • Creager, Angela N. H. 1998. “Producing Molecular Therapeutics from Human Blood: Edwin Cohn’s Wartime Enterprise.” S. de Chadarevian and H. Kamminga (eds.), Molecularizing Biology and Medicine, pp. 107–138

  • Creager, Angela NH. 2002. The Life of a Virus: Tobacco Mosaic Virus as an Experimental Model, 1930–1965. Chicago:University of Chicago Press

    Google Scholar 

  • Creager, Angela NH. 2006. ‹Nuclear Energy in the Service of Biomedicine: The U.S. Atomic Energy Commission’s Radioisotope Program, 1946–1950.’ Journal of the History of Biology 39: 649–684

    Article  Google Scholar 

  • Creager, Angela NH, Morgan, Gregory J. 2008. ‹After the Double Helix: Rosalind Franklin’s Research on Tobacco Mosaic Virus.’ Isis 99: 239–272

    Article  Google Scholar 

  • Cremer, Hans-Diedrich, Tiselius, Arne. 1950. ‹Elektrophorese von Eiweiss in Filtrierpapier.’ Biochemische Zeitschrift 320: 273–283

    Google Scholar 

  • Dale, G, Latner, AL. 1969. ‹Isoelectric Focusing of Serum Proteins in Acrylamide Gels Followed by Electrophoresis.’ Clinica Chimica Acta 24: 61–68

    Article  Google Scholar 

  • Davis, Baruch J. 1964. ‹Disc Electrophoresis, II: Method and Application to Human Serum Proteins.’ Annals of the New York Academy of Sciences 121: 404–427

    Article  Google Scholar 

  • Davis, Baruch J. and Ornstein, Leonard. 1959. “A New High Resolution Electrophoresis Method.” Paper presented at the Society for the Study of Blood, New York Academy of Medicine, 24 March 1959

  • De Chadarevin, Soraya. 1998. “Following Molecules: Hemoglobin between the Clinic and the Laboratory.” S. de Chadarevian and H. Kamminga (eds.), Molecularizing Biology and Medicine, pp. 171–201

  • De Chadarevin, Soraya. 2002. Designs for Life: Molecular Biology after World War II. Cambridge:Cambridge University Press

    Google Scholar 

  • De Chadarevian, Soraya, Hopwood, Nick (eds.). 2004. Models: The Third Dimension of Science. Stanford, CA:Stanford University Press

    Google Scholar 

  • De Chadarevian, Soraya, Kamminga, Harmke (eds.). 1998. Molecularizing Biology and Medicine: New Practices and Alliances, 1910s–1970s. Amsterdam:Harwood Academic Publishers

    Google Scholar 

  • De Chadarevian, Soraya, Strasser, Bruno. 2002. ‹Molecular Biology in Postwar Europe: Towards a ‹Glocal’ Picture.’ Studies in History and Philosophy of Biological and Biomedical Sciences 33C: 361–365

    Article  Google Scholar 

  • Durrum, EL. 1950. ‹A Microelectrophoretic and Microionophoretic Technique.’ Journal of the American Chemical Society 72: 2943–2948

    Article  Google Scholar 

  • Elzen, Boelie. 1986. ‹Two Ultracentrifuges: A Comparative Study of the Social Construction of Artefacts.’ Social Studies of Science 16: 621–662

    Article  Google Scholar 

  • Fleming, Donald. 1968. ‹ÉmigrÉ Physicists and the Biological Revolution.’ Perspectives in American History 2: 152–189

    Google Scholar 

  • Fuerst, John A. 1982. ‹The Role of Reductionism in the Development of Molecular Biology: Peripheral or Central?’ Social Studies of Science 12: 241–278

    Article  Google Scholar 

  • Fuerst, John A. 1984. ‹The Definition of Molecular Biology and the Definition of Policy: The Role of the Rockefeller Foundation’s Policy for Making Biology.’ Social Studies of Science 14: 225–237

    Article  Google Scholar 

  • Galison, Peter. 1997. Image and Logic: A Material Culture of Microphysics. Chicago:University of Chicago Press

    Google Scholar 

  • Gaudillière, Jean-Paul. 2002. Inventer la biomedicine: La France, l’Amérique et la production des saviors du vivant (1945–1965). Paris:éditions la Découverte

    Google Scholar 

  • Gaudillière, Jean-Paul, Rheinberger, Hans-Jörg (eds.). 2004. From Molecular Genetics to Genomics: The Mapping Cultures of Twentieth-Century Genetics. London/New York:Routledge

    Google Scholar 

  • Geison, Gerald L. and Holmes, Frederic L. (eds.). 1992. Research Schools: Historical Reappraisals. Vol. 8 of Osiris

  • Gordon, AH, Keil, B, Sebesta, K. 1949. ‹Electrophoresis of Proteins in Agar Jelly.’ Nature 164: 498–499

    Article  Google Scholar 

  • Gordon, AH, Keil, B, Sebesta, K, Knessl, O, Sorm, F. 1950. ‹Electrophoresis of Proteins in Agar Jelly.’ Collection of Czechoslovak Chemical Communications 15: 1–16

    Google Scholar 

  • Grabar, Pierre. 1980. ‹Citation Classic – Method for Immunoelectrophoretic Analysis of Mixtures of Antigenic Substances.’ Current Contents/Life Sciences 1: 10

    Google Scholar 

  • Grabar, Pierre, Williams, Curtis A. 1953. ‹Méthode Permettant L’étude Conjuguée des Propriétés électrophorétiques et Immunochimiques D’Un Mélange de Protéines: Application au Sérum Sanguin.’ Biochimica et Biophysica Acta 10: 193–194

    Article  Google Scholar 

  • Grabar, Pierre, Williams, Curtis A. 1955. ‹Méthode Immuno-électrophorétique D’Analyse de Mélanges de Substances Antigéniques.’ Biochimica et Biophysica Acta 17: 67–74

    Article  Google Scholar 

  • Grabar, Pierre, Nowinski, Wiktor W, Genereaux, Bruce D. 1956. ‹Use of Pectin in Gel Electrophoresis.’ Nature 178: 430

    Article  Google Scholar 

  • Haglund, Herman, Tiselius, Arne. 1950. ‹Zone Electrophoresis in a Glass Powder Column: Preliminary Report.’ Acta Chemica Scandinavica 4: 957–962

    Article  Google Scholar 

  • Hjertén, Stellan. 1963. ‹‹Molecular-Sieve’ Electrophoresis in Cross-Linked Polyacrylamide Gels.’ Journal of Chromatography 11: 66–70

    Article  Google Scholar 

  • Hjertén, Stellan. 1988. ‹The History of the Development of Electrophoresis in Uppsala.’ Electrophoresis 9: 3–15

    Article  Google Scholar 

  • Hjertén, Stellan. 2002. ‹Uppsala School in Separation Science: My Contributions and Some Personal Reflections and Comments.’ Haleem J Issaq (ed.), A Century of Separation Science. New York:Marcel Dekker, pp. 421–452

    Google Scholar 

  • Hjertén, Stellan. 2003. ‹Stellan Hjertén, Uppsala University.’ Analyst 128: 1307–1309

    Article  Google Scholar 

  • Judson, Horace F. 1980. ‹Reflections on the Historiography of Molecular Biology.’ Minerva 18: 369–421

    Article  Google Scholar 

  • Kay, Lily E. 1985. ‹The Secret of Life: Niels Bohr’s Influence on the Biology Program of Max Delbrück.’ Revista di Storia della Scienze 2: 487–510

    Google Scholar 

  • Kay, Lily E. 1988. ‹Laboratory Technology and Biological Knowledge: The Tiselius Electrophoresis Apparatus, 1930–1945.’ History and Philosophy of the Life Sciences 10: 51–72

    Google Scholar 

  • Kay, Lily E. 1989. ‹Molecular Biology and Pauling’s Immunochemistry: A Neglected Dimension.’ History and Philosophy of the Life Sciences 11: 211–219

    Google Scholar 

  • Kay, Lily E. 1993. The Molecular Vision of Live: Caltech, the Rockefeller Foundation, and the Rise of the New Biology. New York:Oxford University Press

    Google Scholar 

  • Kekwick, RA, Pedersen, Kai O. 1974. ‹Arne Tiselius: 1902–1971.’ Biographical Memoirs of Fellows of the Royal Society 20: 401–428

    Article  Google Scholar 

  • Keller, Evelyn Fox. 1990. ‹Physics and the Emergence of Molecular Biology: A History of Cognitive and Political Synergy.’ Journal of the History of Biology 23: 389–409

    Article  Google Scholar 

  • Kohler, Robert E. 1976. ‹The Management of Science: The Experience of Warren Weaver and the Rockefeller Foundation Programme in Molecular Biology.’ Minerva 14: 279–306

    Article  Google Scholar 

  • Kohler, Robert E. 1991. Partners in Science: Foundations and Natural Scientists, 1900–1945. Chicago:University of Chicago Press

    Google Scholar 

  • Kohler, Robert E. 2002. Landscapes and Labscapes: Exploring the Lab-Field Border in Biology. Chicago:University of Chicago Press

    Google Scholar 

  • Kohn, Joachim. 1957a. ‹A Cellulose Acetate Supporting Medium for Zone Electrophoresis.’ Clinica Chimica Acta 2: 297–303

    Article  Google Scholar 

  • Kohn, Joachim. 1957b. ‹An Immuno-Electrophoretic Technique.’ Nature 180: 986–987

    Article  Google Scholar 

  • Kohn, Joachim. 1958a. “Membrane Filter Electrophoresis.” H. Peeters (ed.), Proceedings of the Fifth Colloquium on Protides of the Biological Fluids, Bruges, 1957. Amsterdam: Elsevier, pp. 120–125

  • Kohn, Joachim. 1958. ‹Small-Scale Membrane Filter Electrophoresis and Immuno-Electrophoresis.’ Clinica Chimica Acta 3: 450–454

    Article  Google Scholar 

  • Kohn, Joachim. 1959. “Small-Scale and Micro-Membrane Filter Electrophoresis and Immuno-Electrophoresis.” H. Peeters (ed.), Proceedings of the Sixth Colloquium on Protides of the Biological Fluids, Bruges, 1958. Amsterdam: Elsevier, pp. 74–78

  • Kohn, Joachim. 1960. ‹Cellulose-Acetate Electrophoresis and Immuno-Diffusion Techniques.’ I Smith (ed.), Chromatographic and Electrophoretic Techniques: Vol. II. Zone Electrophoresis. New York:Interscience, pp. 56–90

    Google Scholar 

  • Kohn, Joachim. 1960b. “Electrophoretic and Immunological Studies on Some Body Fluids in Normal and Pathological Conditions and a Preliminary Communication on the Separation of Proteins of the Labyrinthine Fluids.” H. Peeters (ed.), Proceedings of the Seventh Colloquium on Protides of the Biological Fluids, Bruges, 1959. Amsterdam: Elsevier, pp. 67–70

  • Kohn, Joachim. 1967. ‹A Multi-Sample Applicator for Zone Electrophoresis.’ Clinica Chimca Acta 18: 65–68

    Article  Google Scholar 

  • Kohn, Joachim. 1968a. ‹Cellulose-Acetate Electrophoresis and Immuno-Diffusion Techniques.’ I Smith (ed.), Chromatographic and Electrophoretic Techniques: Vol. II. Zone Electrophoresis, 2nd ed. New York:Interscience, pp. 84–146

    Google Scholar 

  • Kohn, Joachim. 1968b. ‹Simplified Procedure for Immunodiffusion Technique on Cellulose Acetate.’ Nature 217: 1261–1262

    Article  Google Scholar 

  • Kohn, Joachim. 1969. ‹Separation of Hemoglobins on Cellulose Acetate.’ Journal of Clinical Pathology 22: 109–111

    Article  Google Scholar 

  • Kohn, Joachim. 1970. ‹Electrophoresis and Immunodiffusion Techniques on Cellulose Acetate Membranes.’ RE Olson (ed.), Methods in Medical Research, 12 vols. Chicago:Year Book Medical Publishers, pp. 243–260

    Google Scholar 

  • Kohn, Joachim. 1971. ‹Double Diffusion in Cellulose Acetate Membrane (CAM).’ CA Williams, MW Chase (eds.), Methods in Immunology and Immunochemistry: Vol. III. Reactions of Antibodies with Soluble Antigens. New York:Academic Press, pp. 168–174

    Google Scholar 

  • Kolin, Alexander. 1954a. ‹Erratum: Separation and Concentration of Proteins in a pH Field Combined with an Electric Field.’ Journal of Chemical Physics 22: 2099

    Google Scholar 

  • Kolin, Alexander. 1954b. ‹Separation and Concentration of Proteins in a pH Field Combined with an Electric Field.’ Journal of Chemical Physics 22: 1628–1629

    Article  Google Scholar 

  • Kunkel, Henry G, Slater, Robert J. 1952. ‹Zone Electrophoresis in Starch Supporting Medium.’ Proceedings of the Society for Experimental Biology and Medicine 80: 42–44

    Google Scholar 

  • Kunkel, Henry G, Tiselius, Arne. 1951. ‹Electrophoresis of Proteins on Filter Paper.’ Journal of General Physiology 35: 89–118

    Article  Google Scholar 

  • Kyle, Robert A, Shampo, Marc A. 2005. ‹Arne Tiselius – Father of Electrophoresis.’ Mayo Clinic Proceedings 80: 302

    Google Scholar 

  • Lenoir, Timothy. 1997. Instituting Science: The Cultural Production of Scientific Disciplines. Stanford, CA:Stanford University Press

    Google Scholar 

  • Lewontin, RC. 1991. ‹Twenty-Five Years Ago in Genetics: Electrophoresis in the Development of Evolutionary Genetics: Milestone or Millstone?’ Genetics 128: 657–662

    Google Scholar 

  • Macko, V, Stegemann, H. 1969. ‹Mapping of Potato Proteins by Combined Electrofocusing and Electrophoresis Identification of Varieties.’ Hoppe-Seyler’s Zeitschrift fur Physiologische Chemie 350: 917–919

    Google Scholar 

  • Martin, AJP, Synge, Richard LM. 1945. ‹Analytical Chemistry of the Proteins.’ Advances in Protein Chemistry 2: 1–83

    Article  Google Scholar 

  • Max Planck Institute Conference. 2006. The Shape of Experiment. Preprint 318. Berlin: Max Plank Institute for the History of Science

  • Max Planck Institute Workshop. 2006. History and Epistemology of Molecular Biology and Beyond: Problems and Perspectives. Preprint 310. Berlin:Max Planck Institute for the History of Science

    Google Scholar 

  • Morange, Michel. 1998. A History of Molecular Biology. Translated by Matthew Cobb. Cambridge, MA:Harvard University Press

    Google Scholar 

  • Olby, Robert C. 1974a. ‹The Origins of Molecular Genetics.’ Journal of the History of Biology 7: 93–100

    Article  Google Scholar 

  • Olby, Robert C. 1974b. The Path to the Double Helix: The Discovery of DNA. Seattle:University of Washington Press

    Google Scholar 

  • Olby, Robert C. 1984. ‹The Sherrif and the Cowboys: Or Weaver’s Support of Astbury and Pauling.’ Social Studies of Science 14: 244–247

    Article  Google Scholar 

  • Olby, Robert C. 1990. ‹The Molecular Revolution in Biology.’ RC Olby, GN Cantor, JRR Christie, MJS Hodge (eds.), Companion to the History of Modern Science. New York:Routledge, pp. 503–520

    Google Scholar 

  • Ornstein, Leonard. 1964. ‹Disc Electrophoresis, I: Background and Theory.’ Annals of the New York Academy of Sciences 121: 321–351

    Article  Google Scholar 

  • Pickering, Andrew. 1995. The Mangle of Practice: Time, Agency, and Science. Chicago:University of Chicago Press

    Google Scholar 

  • Putnam, Frank. 1993. ‹Alpha-, Beta-, Gamma-Globulin – Arne Tiselius and the Advent of Electrophoresis.’ Perspectives in Biology and Medicine 36: 323–337

    Google Scholar 

  • Rabinow, Paul. 1996. Making PCR: A Story of Biotechnology. Chicago:University of Chicago Press

    Google Scholar 

  • Rasmussen, Nicholas. 1997. Picture Control: The Electron Microscope and the Transformation of Biology in America, 1940–1960. Stanford, CA:Stanford University Press

    Google Scholar 

  • Raymond, Samuel, Weintraub, Lewis. 1959. ‹Acrylamide Gel as Supporting Medium for Zone Electrophoresis.’ Science 130: 711

    Article  Google Scholar 

  • Rheinberger, Jans-Hörg. 1995. ‹Beyond Nature and Culture: A Note on Medicine in the Age of Molecular Biology.’ Science in Context 8: 249–263

    Article  Google Scholar 

  • Rheinberger, Jans-Hörg. 1997. Toward a History of Epistemic Things: Synthesizing Proteins in Test Tube. Stanford, CA:Stanford University Press

    Google Scholar 

  • Rheinberger, Jans-Hörg. 2001. ‹Putting Isotopes to Work: Liquid Scintillation Counters, 1950–1970.’ Bernward Joerges, Terry Shinn, B Joerges (eds.), Instrumentation: Between Science, State, and Industry. Dordrecht:Kluwer Academic Publishing, pp. 143–174

    Google Scholar 

  • Rilbe (Stockholm), Harry. 1995. ‹Some Reminiscences of the History of Electrophoresis.’ Electrophoresis 16: 1354–1359

    Article  Google Scholar 

  • Rocco, Richard M. 2005. ‹Joachim Kohn (1912–1987) and the Origin of Cellulose Acetate Electrophoresis.’ Clinical Chemistry 51: 1896–1901

    Article  Google Scholar 

  • Schaffner, Kenneth F. 1974. ‹The Peripherality of Reductionism in the Development of Molecular Biology.’ Journal of the History of Biology 7: 111–139

    Article  Google Scholar 

  • Smithies, Oliver. 1954. ‹The Application of Four Methods for Assessing Protein Homogeneity to Crystalline β-Lactoglobulin: An Anomaly in Phase Rule Solubility Tests.’ Biochemical Journal 58: 31–38

    Google Scholar 

  • Smithies, Oliver. 1955a. ‹Grouped Variations in the Occurrence of New Protein Components in Normal Human Serum.’ Nature 175: 307–308

    Article  Google Scholar 

  • Smithies, Oliver. 1955b. ‹Zone Electrophoresis in Starch Gels: Group Variations in the Serum Proteins of Normal Human Adults.’ Biochemical Journal 61: 629–641

    Google Scholar 

  • Smithies, Oliver. 1959. ‹Zone Electrophoresis in Starch Gels and its Application to Studies of Serum Proteins.’ Advances in Protein Chemistry 14: 65–113

    Article  Google Scholar 

  • Smithies, Oliver. 1995. ‹Early Days of Gel Electrophoresis.’ Genetics 139: 1–4

    Google Scholar 

  • Smithies, Oliver, Poulik, MD. 1956. ‹Two-Dimensional Electrophoresis of Serum Proteins.’ Nature 177: 1033

    Article  Google Scholar 

  • Svensson, Harry. 1961. ‹Isoelectric Fractionation, Analysis, and Characterization of Ampholytes in Natural pH Gradients. I. The Differential Equation of Solute Concentrations at a Steady State and its Solution for Simple Cases.’ Acta Chemica Scandinavica 15: 325–341

    Article  Google Scholar 

  • Svensson, Harry. 1962. ‹Isoelectric Fractionation, Analysis, and Characterization of Ampholytes in Natural pH Gradients. II. Buffering Capacity and Conductance of Isoionic Ampholytes.’ Acta Chemica Scandinavica 16: 456–466

    Article  Google Scholar 

  • Tiselius, Arne. 1937. ‹A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures.’ Transactions of the Faraday Society 33: 524–531

    Article  Google Scholar 

  • Tiselius, Arne. 1953. ‹Zone Electrophoresis in Filter Paper and Other Media.’ Discussions of the Faraday Society 13: 29–33

    Article  Google Scholar 

  • Tiselius, Arne. 1964. “Electrophoresis and Adsorption Analysis as Aids in Investigating Large Molecular Weight Substances and Their Breakdown Products”. Nobel Lectures, Chemistry 1942–1962. Amsterdam:Elsevier Publishing Company, pp. 195–215

    Google Scholar 

  • Tiselius, Arne, Flodin, Per. 1953. ‹Zone Electrophoresis.’ Advances in Protein Chemistry 8: 461–486

    Article  Google Scholar 

  • Turba, F, Enenkel, HJ. 1950. ‹Elektrophorese von Proteinen in Filterpapier.’ Naturwissenschaften 37: 93

    Article  Google Scholar 

  • Vesterberg, Olof. 1989. ‹History of Electrophoretic Methods.’ Journal of Chromatography 480: 3–19

    Article  Google Scholar 

  • Vesterberg, Olof. 1993. ‹A Short History of Electrophoretic Methods.’ Electrophoresis 14: 1243–1249

    Article  Google Scholar 

  • Vesterberg, Olof, Svensson, Harry. 1966. ‹Isoelectric Fractionation, Analysis, and Characterization of Ampholytes in Natural pH Gradients. IV. Further Studies on the Resolving Power in Connection with Separation of Myoglobins.’ Acta Chemica Scandinavica 20: 820–834

    Article  Google Scholar 

  • Virtanen, Rauno, Wilhelmsen, Tore W., Bjerrum, Ole J., Takagi, Toshio and Righelius, Petrus Georgius (eds.). 1995. “Tribute to Professor Stellan Hjertén.” Electrophoresis 16: 1327–1336

  • Weaver, Warren. 1970. ‹Molecular Biology: Origins of the Term.’ Science 170: 581–582

    Article  Google Scholar 

  • Wieland, Theodor, Fischer, Edgar. 1948. ‹Über Elektrophorese auf Filtrierpapier.’ Naturwissenschaften 35: 29–30

    Google Scholar 

  • Williams, Curtis A, Grabar, Pierre. 1955a. ‹Immunoelectrophoretic Studies on Serum Proteins: I. The Antigens of Human Serum.’ Journal of Immunology 74: 158–168

    Google Scholar 

  • Williams, Curtis A, Grabar, Pierre. 1955b. ‹Immunoelectrophoretic Studies on Serum Proteins: II. Immune Sera: Antibody Distribution.’ Journal of Immunology 74: 397–403

    Google Scholar 

  • Williams, Curtis A, Grabar, Pierre. 1955c. ‹Immunoelectrophoretic Studies on Serum Proteins: III. Human Gamma Globulin.’ Journal of Immunology 74: 404–410

    Google Scholar 

  • Wright, Susan. 1994. Molecular Politics: Developing American and British Regulatory Policy for Genetic Engineering, 1972–1982. Chicago:University of Chicago Press

    Google Scholar 

  • Yoxen, Edward. 1979. ‹Where Does Schrödinger’s ‹What Is Life?’ Belong in the History of Molecular Biology?’ History of Science 17: 17–52

    Google Scholar 

  • Yoxen, Edward. 1984. ‹Scepticism about the Centrality of Technology Transfer in the Rockefeller Foundation Programme in Molecular Biology.’ Social Studies of Science 14: 248–252

    Article  Google Scholar 

  • Zallen, Doris T. 1992. ‹The Rockefeller Foundation and Spectroscopy Research: The Programs at Chicago and Utrecht.’ Journal of the History of Biology 25: 67–89

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Michael S. Mahoney, Angela N. H. Creager, and the journal’s three anonymous reviewers for their careful and insightful comments on earlier versions of this paper. The author alone is responsible for any remaining errors. The paper was first written for a graduate seminar on the material epistemology of science, “Thinking Through Things and Thinking Things Through,” under the supervision of Michael S. Mahoney in the Program in History of Science, Princeton University, and, accordingly, it is dedicated in memory of him. An earlier version of the paper was presented at the␣42nd Meeting of the Joint Atlantic Seminar for the History of Biology, the 2007 Annual Meeting of the Canadian Society for the History and Philosophy of Science, and the 2007 Biennial Meeting of the International Society for the History, Philosophy, and Social Study of Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Hsueh-Hao Chiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, H.HH. The Laboratory Technology of Discrete Molecular Separation: The Historical Development of Gel Electrophoresis and the Material Epistemology of Biomolecular Science, 1945–1970. J Hist Biol 42, 495–527 (2009). https://doi.org/10.1007/s10739-008-9169-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10739-008-9169-5

Keywords

Navigation