Skip to main content
Log in

Non-compact Groups, Coherent States, Relativistic Wave Equations and the Harmonic Oscillator II: Physical and Geometrical Considerations

Foundations of Physics Aims and scope Submit manuscript

Abstract

The physical meaning of the particularly simple non-degenerate supermetric, introduced in the previous part by the authors, is elucidated and the possible connection with processes of topological origin in high energy physics is analyzed and discussed. New possible mechanism of the localization of the fields in a particular sector of the supermanifold is proposed and the similarity and differences with a 5-dimensional warped model are shown. The relation with gauge theories of supergravity based in the OSP(1/4) group is explicitly given and the possible original action is presented. We also show that in this non-degenerate super-model the physic states, in contrast with the basic states, are observables and can be interpreted as tomographic projections or generalized representations of operators belonging to the metaplectic group Mp(2). The advantage of geometrical formulations based on non-degenerate super-manifolds over degenerate ones is pointed out and the description and the analysis of some interesting aspects of the simplest Riemannian superspaces are presented from the point of view of the possible vacuum solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Akulov, V.P., Volkov, D.V.: Theor. Math. Phys. 41, 939 (1979)

    Article  MathSciNet  Google Scholar 

  2. Akulov, V.P., Volkov, D.V.: Theor. Math. Phys. 42, 10 (1980)

    Article  MathSciNet  Google Scholar 

  3. Akulov, V.P., Soroka, V.A., Volkov, D.V.: JETP Lett. 22, 396 (1975) (in Russian)

    Google Scholar 

  4. Akulov, V.P., Soroka, V.A., Volkov, D.V.: Theor. Math. Phys. 31, 12 (1977)

    Article  MathSciNet  Google Scholar 

  5. Alfaro, D., Fubini, S., Furlan, G.: Nuovo Cim. A 34, 569 (1976)

    Article  ADS  Google Scholar 

  6. Arkani-Hamed, N., : Phys. Lett. B 429, 263 (1998)

    Article  MathSciNet  Google Scholar 

  7. Arkani-Hamed, N., : Phys. Rev. D 59, 0860 (1999)

    Article  Google Scholar 

  8. Arnowitt, R., Nath, P.: Phys. Rev. D 15, 1033 (1977)

    Article  MathSciNet  Google Scholar 

  9. Arnowitt, R., Nath, P., Zumino, B.: Nucl. Phys. B 56, 81 (1975)

    MathSciNet  Google Scholar 

  10. Azcarraga, J.A., Lukierski, J.: Z. Phys. C 30, 221 (1986), and references therein

    Article  ADS  MathSciNet  Google Scholar 

  11. Bajc, B., Gabadadze, G.: Phys. Lett. B 474, 282 (2000), and references therein

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Bellucci, S., : Phys. Rev. D 66, 086001 (2002), and references therein

    Article  ADS  MathSciNet  Google Scholar 

  13. Bertolami, O., : Int. J. Mod. Phys. A 6, 4149 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  14. Buchbinder, I.L., Kuzenko, S.M.: Ideas and Methods of Supersymmetry and Supergravity. PA:IOP Publishing, Philadelphia (1995)

    Book  MATH  Google Scholar 

  15. Cirilo-Lombardo, D.J.: Rom. J. Phys. 50(7–8), 875 (2005)

    MathSciNet  Google Scholar 

  16. Cirilo-Lombardo, D.J.: Elem. Part. Nucl. Lett. 6(3), 416 (2006)

    Article  Google Scholar 

  17. Cirilo-Lombardo, D.J.: Hadronic J. 29, 355 (2006)

    MATH  MathSciNet  Google Scholar 

  18. Cirilo-Lombardo, D.J.: Found. Phys. 37(6), (2007), and references therein

  19. Cirilo-Lombardo, D.J.: Elem. Part. Nucl. Lett. 3(4), 239 (2007)

    Article  Google Scholar 

  20. Cirilo-Lombardo, D.J. (in preparation)

  21. Constantinescu, F.: J. Phys. A: Math. Gen. 38, 1385 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Corben, H.C.: Found. Phys. 10, 181 (1980), and references therein

    Article  MathSciNet  Google Scholar 

  23. Curtright, T., et al.: JHEP 0704.020 (2007), and references therein

  24. De Witt, B.: Supermanifolds. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  25. Dvali, G., Shifman, M.: Nucl. Phys. B 504, 127 (1996)

    Article  MathSciNet  Google Scholar 

  26. Dvali, G., Shifman, M.: Phys. Lett. B 396, 64 (1997)

    Article  ADS  Google Scholar 

  27. Frydryzak, A.: Lagrangian models of particles with spin. arXiv:hep-th/9601020v1 (6 Jan. 1996)

  28. Gabella, M., : Phys. Rev. D 76, 055001 (2007), and references therein

    Article  ADS  Google Scholar 

  29. Giddings, S.B., Maharana, A.: Phys. Rev. D 73, 126003 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. Gogberashvili, M.: hep-ph/9812365

  31. Gogberashvili, M.: hep-ph/9812296

  32. Goldman, T., : Phys. Lett. B 171, 217 (1986)

    Article  ADS  Google Scholar 

  33. Klauder, J.R., Skagerstam, B.S.: Coherent States. World Scientific, Singapore (1985)

    MATH  Google Scholar 

  34. Klauder, J.R., Skagerstam, B.-S.K.: J. Phys. A: Math. Theor. 40, 2013 (2007)

    Article  MathSciNet  Google Scholar 

  35. Klauder, J.R., Sudarshan, E.C.G.: Fundamentals of Quantum Optics. Benjamin, New York (1968)

    Google Scholar 

  36. Koyama, K.: arXiv:astro-ph/0706.1557

  37. Marmo, G., : J. Phys. Conf. Ser. 87, 012013 (2007)

    Article  ADS  Google Scholar 

  38. Nieto, M.M.: Private communication

  39. Ogievetsky, V., Sokatchev, E.: Phys. Lett. B 79, 222 (1978)

    Article  ADS  Google Scholar 

  40. Pashnev, A.I., Volkov, D.V.: Teor. Mat. Fiz. 44(3), 321 (1980) (in Russian)

    MathSciNet  Google Scholar 

  41. Polchinski, J.: Phys. Rev. Lett. 75, 4724 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 4690 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. Rubakov, V.A., Shaposhnikov, M.E.: Phys. Lett. B 125, 136 (1983)

    Article  ADS  Google Scholar 

  45. Sannikov, S.S.: Non-compact symmetry group of a quantum oscillator. Z. Eksp. Teor. Fiz. 49, 1913 (1965) (in Russian)

    MathSciNet  Google Scholar 

  46. Siegel, W., Gates, S.J. Jr.: Nucl. Phys. B 147, 77 (1978)

    Article  ADS  Google Scholar 

  47. Simon, R., Mukunda, N.: The two-dimensional symplectic and metaplectic groups and their universal cover. In: Gruber, B. (ed.) Symmetries in Science VI: From the Rotation Groups to the Quantum Algebras. Plenum, New York (1994)

    Google Scholar 

  48. Sorokin, D.P.: The Heisenberg algebra and spin. Fortschr. Phys. 50, 724 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  49. Sorokin, D.P., Volkov, D.V.: (Anti) commuting spinors and supersymmetric dynamics of semions. Nucl. Phys. B 409, 547 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. Treder, H.-J., Yourgrou, W.: Found. Phys. 8, 695 (1978), and references therein

    Article  ADS  MathSciNet  Google Scholar 

  51. van Nieuwenhuizen, P.: Phys. Rep. 68, 189 (1981), and references therein

    Article  ADS  MathSciNet  Google Scholar 

  52. Wess, J., Zumino, B.: Phys. Lett. B 66, 361 (1977)

    Article  MathSciNet  Google Scholar 

  53. Zumino, B.: CERN Preprint TH2120 (1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Julio Cirilo-Lombardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirilo-Lombardo, D.J. Non-compact Groups, Coherent States, Relativistic Wave Equations and the Harmonic Oscillator II: Physical and Geometrical Considerations. Found Phys 39, 373–396 (2009). https://doi.org/10.1007/s10701-009-9289-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9289-6

Keywords

Navigation