Skip to main content
Log in

Is plant breeding science objective truth or social construction? The case of yield stability

  • Published:
Agriculture and Human Values Aims and scope Submit manuscript

Abstract

This article presents a holistic framework for understanding the scienceof plant breeding, as an alternative to the common objectivist andconstructivist approaches in studies of science. It applies thisapproach to understanding disagreements about how to deal with yieldstability. Two contrasting definitions of yield stability are described,and concomitant differences in the understanding and roles ofsustainability and of selection, test, and target environments areexplored. Critical questions about plant breeding theory and practiceare posed, and answers from the viewpoint of the two contrastingdefinitions of yield stability are analyzed, based on key publicationsin the field. Differences in answers to these questions appear to resultboth from the contingencies of plant breeders' experiences withparticular crop varieties and growing environments, and from differencesin social and institutional settings – plant breeding science isboth objective truth and social construction. The goal of using aholistic framework is to encourage discussion among plant breeders,farmers, social scientists, and others, of the bases for disagreementswithin plant breeding, in order to facilitate plant breeding'scontribution to a more environmentally, economically, and sociallysustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcoff, L. M. (ed.) (1998). Epistemology: The Big Question. Oxford: Blackwell.

    Google Scholar 

  • Allard, R. W. (1999). Principles of Plant Breeding, 2nd edn. New York: John Wiley & Sons.

    Google Scholar 

  • Anderson, J. R. and P. B. R. Hazell (1989a). “Introduction.” In J. R. Anderson and P. B. R. Hazell (eds.), Variability in Grain Yields: Implications for Agricultural Research and Policy in Developing Countries (pp. 1-10). Baltimore, Maryland: Johns Hopkins University Press.

    Google Scholar 

  • Anderson, J. R. and P. B. R. Hazell (1989b). “Synthesis and needs in agricultural research and policy.” In J. R. Anderson and P. B. R. Hazell (eds.), Variability in Grain Yields: Implications for Agricultural Research and Policy in Developing Countries (pp. 339-356). Baltimore, Maryland: Johns Hopkins University Press.

    Google Scholar 

  • Anderson, J. R. and P. B. R. Hazell (eds.) (1989c). Variability in Grain Yields: Implications for Agricultural Research and Policy in Developing Countries. Baltimore, Maryland: Johns Hopkins University Press.

    Google Scholar 

  • Aquino, P. (1998). “Mexico.” In M. L. Morris (ed.), Maize Seed Industries in Developing Countries (pp. 231-250). Boulder, Colorado/Mexico, D.F.: Lynne Rienner/CIMMYT.

    Google Scholar 

  • Audi, R. (1998). Epistemology. London: Routledge.

    Google Scholar 

  • Bänziger, M. and H. R. Lafitte (1997). “Breeding for Nstressed environments: How useful are N-stressed selection environments and secondary traits?” In G. O. Edmeades, M. Bänziger, H. R. Mickelson, and C. B. Peña-Valdivia (eds.), Developing Drought-and Low-N Tolerant Maize, Proceedings of a Symposium, March 25-29, 1996, CIMMYT, El Batan, Mexico (pp. 401-404). Mexico, D.F., Mexico: CIMMYT.

    Google Scholar 

  • Bänziger, M., F. J. Betrán, and H. R. Lafitte (1997). “Efficiency of high-nitrogen selection environments for improving maize for low-nitrogen target environments.” Crop Science 37: 1103-1109.

    Google Scholar 

  • Bänziger, M., G. O. Edmeades, and H. R. Lafitte (1999). “Selection for drought tolerance increases maize yields across a range of nitrogen levels.” Crop Science 39: 1035-1040.

    Google Scholar 

  • Barah, B. C., H. P. Binswanger, B. S. Rana, and N. G. P. Rao (1981). “The use of risk aversion in plant breeding: Concept and application.” Euphytica 30: 451-458.

    Google Scholar 

  • Bernard, H. R. (1998). “Introduction: On method and methods in anthropology.” In H. R. Bernard (ed.), Handbook of Methods in Cultural Anthropology (pp. 9-36). Walnut Creek: Altamira Press.

    Google Scholar 

  • Bolaños, J. and G. O. Edmeades (1996). “The importance of anthesis-silking interval in breeding for drought tolerance in tropical maize.” Field Crops Research 48: 65-80.

    Google Scholar 

  • Borlaug, N. E. (1999). “How to feed the 21st century?” In J. G. Coors and S. Pandey (eds.), The Genetics and Exploitation of Heterosis in Crops (pp. 509-519). Madison, Wisconsin: ASA-CSSA-SSSA.

    Google Scholar 

  • Borlaug, N. E. (n.d.). The Green Revolution: Peace and Humanity. Norman E. Borlaug, 1970 Nobel Peace Prize. Mexico City: CIMMYT.

  • Bourdieu, P. (2000). Pascalian Meditations. Cambridge, UK: Polity Press. (First published as Méditations pascaliennes, Éditions de Seuil, 1997.)

    Google Scholar 

  • Bramel-Cox, P. J. (1996). “Breeding for reliability of performance across unpredictable environments.” In M. S. Kang and H. G. Gauch Jr. (eds.), Genotype-by-Environment Interaction (pp. 309-339). Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Braun, H.-J., S. Rajaram, and M. van Ginkel (1997). “CIMMYT's approach to breeding for wide adaptation.” In P. M. A. Tigerstedt (ed.), Adaptation and Plant Breeding (pp. 197-205). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Busch, L., W. B. Lacy, J. Burkhardt, D. Hemken, J. Moraga-Rojel, T. Koponen, and J. de Souza Silva (1995). Making Nature, Shaping Culture: Plant Biodiversity in Global Context. Lincoln, Nebraska: University of Nebraska Press.

    Google Scholar 

  • Bushamuka, V. N. and R. W. Zobel (1998). “Differential genotypic and root type penetration of compacted soil layers.” Crop Science 38: 776-781.

    Google Scholar 

  • Byerlee, D. (1994). “Issues and options for social scientists in global germplasm improvement.” In M. P. Collinson and K. W. Platais (eds.), Social Science in the CGIAR. Proceedings of a Meeting of CGIAR Social Scientists Held at the International Service for National Agricultural Research (ISNAR), The Hague, The Netherlands, August, 1992. CGIAR Study Paper, Number 28 (pp. 7-9). Washington, DC: The World Bank.

    Google Scholar 

  • Byerlee, D. (1996). “Modern varieties, productivity and sustainability: Recent experience and emerging challenges.” World Development 24: 697-718.

    Google Scholar 

  • Byrne, P. F., J. Bolaños, G. O. Edmeades, and D. L. Eaton (1995). “Gains from selection under drought versus multilocation testing in relation to tropical maize populations.” Crop Science 35: 63-69.

    Google Scholar 

  • Calderini, D. F. and G. A. Slafer (1999). “Has yield stability changed with genetic improvement of wheat yield?” Euphytica 107: 51-59.

    Google Scholar 

  • Callaway, M. B. and C. A. Francis (eds.) (1993). Crop Improvement for Sustainable Agriculture. Lincoln, Nebraska: University of Nebraska Press.

    Google Scholar 

  • Ceballos, H., S. Pandey, L. Narro, and J. C. Perez-Velásquez (1998). “Additive, dominant, and epistatic effects for maize grain yield in acid and non-acid soils.” Theoretical and Applied Genetics 96: 662-668.

    Google Scholar 

  • Ceccarelli, S. (1996a). “Adaptation to low/high input cultivation.” Euphytica 92: 203-214.

    Google Scholar 

  • Ceccarelli, S. (1996b). “Positive interpretation of genotype by environment interactions in relation to sustainability and biodiversity.” In M. Cooper and G. L. Hammer (eds.), Plant Adaptation and Crop Improvement (pp. 467-486). Wallingford, Oxford, UK: CAB International in association with IRRI and ICRISAT.

    Google Scholar 

  • Ceccarelli, S., W. Erskine, J. Hamblin, and S. Grando (1994). “Genotype by environment interaction and international breeding programmes.” Experimental Agriculture 30: 177-187.

    Google Scholar 

  • Ceccarelli, S., S. Grando, and A. Impiglia (1998). “Choice of selection strategy in breeding barley for stress environments.” Euphytica 103: 307-318.

    Google Scholar 

  • Chapman, S. C., J. Crossa, and G. O. Edmeades (1997). “Genotype by environment effects and selection for drought tolerance in tropical maize. I. Two mode pattern analysis of yield.” Euphytica 95: 1-9.

    Google Scholar 

  • Cleveland, D. A. (1998). “Balancing on a planet: toward an agricultural anthropology for the 21st century.” Human Ecology 26: 323-340.

    Google Scholar 

  • Cleveland, D. A. and S. C. Murray (1997). “The world's crop genetic resources and the rights of indigenous farmers.” Current Anthropology 38: 477-515.

    Google Scholar 

  • Cleveland, D. A., D. Soleri, and S. E. Smith (2000). “A biological framework for understanding farmers' plant breeding.” Economic Botany 54(3): 377-394.

    Google Scholar 

  • Cooper, M. and D. E. Byth (1996). “Understanding plant adaptation to achieve systematic applied crop improvement-a fundamental challenge.” In M. Cooper and G. L. Hammer (eds.), Plant Adaptation and Crop Improvement (pp. 5-23). Wallingford, Oxford, UK: CAB International in association with IRRI and ICRISAT.

    Google Scholar 

  • Cooper, M. and G. L. Hammer (eds.) (1996a). Plant Adaptation and Crop Improvement. Wallingford, Oxford, UK: CAB International in association with IRRI and ICRISAT.

    Google Scholar 

  • Cooper, M. and G. L. Hammer (1996b). “Preface.” In M. Cooper and G. L. Hammer (eds.), Plant Adaptation and Crop Improvement (pp. xiii-xv). Wallingford, Oxford, UK: CAB International in association with IRRI and ICRISAT.

    Google Scholar 

  • Cooper, M. and G. L. Hammer (1996c). “Synthesis of strategies for crop improvement.” in M. Cooper and G. L. Hammer (eds.), Plant adaptation and crop improvement (pp. 591-623). Wallingford, Oxford, UK: CAB International in association with IRRI and ICRISAT.

    Google Scholar 

  • Cooper, M., P. S. Brennan, and J. A. Sheppard (1996). “A strategy for yield improvement of wheat which accommodates large genotype by environment interactions.” In M. Cooper and G. L. Hammer (eds.), Plant Adaptation and Crop Improvement (pp. 487-511). Wallingford, Oxford, UK: CAB International in association with IRRI and ICRISAT.

    Google Scholar 

  • Cooper, M., R. E. Stucker, I. H. DeLacy, and B. D. Harch (1997). “Wheat breeding nurseries, target environments, and indirect selection for grain yield.” Crop Science 37: 1168-1176.

    Google Scholar 

  • Coors, J. G. (1999). “Selection methodology and heterosis.” In J. G. Coors and S. Pandey (eds.), The Genetics and Exploitation of Heterosis in Crops (pp. 225-245). Madison, Wisconsin: ASA-CSSA-SSSA.

    Google Scholar 

  • Cromwell, E., S. Wiggins, and S. Wentzel (1993). Sowing Beyond the State. London, UK: Overseas Development Institute.

    Google Scholar 

  • Crossa, J., M. Vargas, F. A. van Eeewijk, C. Jiang, G. O. Edmeades, and D. Hoisington (1999). “Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables.” Theoretical and Applied Genetics 99: 611-625.

    Google Scholar 

  • Duvick, D. N. (1992). “Genetic contributions to advances in yield of U.S. maize.” Maydica 37: 69-79.

    Google Scholar 

  • Duvick, D. N. (1996). “Plant breeding, an evolutionary concept.” Crop Science 36: 539-548.

    Google Scholar 

  • Eberhart, S. A. and W. A. Russell (1966). “Stability parameters for comparing varieties.” Crop Science 6: 36-40.

    Google Scholar 

  • Edmeades, G. O., J. Bolaños, S. C. Chapman, H. R. Lafitte, and M. Bänziger (1999). “Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index.” Crop Science 39: 1306-1315.

    Google Scholar 

  • Ellen, R. (1996). “The cognitive geometry of nature: a contextual approach.” In P. Descola and G. Palsson (eds.), Nature and Society: Anthropological Perspectives (pp. 103-124). New York: Routledge.

    Google Scholar 

  • Ellis, F. (1993). Peasant Economics: Farm Households and Agrarian Development, 2nd edn. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Evans, L. T. (1993). Crop Evolution, Adaptation and Yield. Cambridge: Cambridge University Press.

    Google Scholar 

  • Evans, L. T. (1997). “Adapting and improving crops: the endless task.” Philosophical Transactions of the Royal Society of London: Biological Sciences 352: 901-906.

    Google Scholar 

  • Evans, L. T. (1998). Feeding the Ten Billion: Plants and Population Growth. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Federer, W. T. and B. T. Scully (1993). “A parsimonious statistical design and breeding procedure for evaluating and selecting desirable characteristics over environments.” Theoretical and Applied Genetics 86: 612-620.

    Google Scholar 

  • Finlay, K. W. and G. N. Wilkinson (1963). “The analysis of adaptation in a plant-breeding programme.” Australian Journal of Agricultural Research 14: 742-754.

    Google Scholar 

  • Fischer, K. S. (1996). “Research approaches for variable rainfed systems-thinking globally, acting locally.” In M. Cooper and G. L. Hammer (eds.), Plant Adaptation and Crop Improvement (pp. 25-35). Wallingford, Oxford, UK: CAB International in association with IRRI and ICRISAT.

    Google Scholar 

  • Foucault, M. (1994). The Order of Things. Reprint of 1971 English edn. New York, New York: Vintage Books. (Originally published in French in 1966 as Les Mots et les choses.)

    Google Scholar 

  • Francis, C. A. and M. B. Callaway (1993). “Crop improvement for future farming systems.” In M. B. Callaway and C. A. Francis (eds.), Crop Improvement for Sustainable Agriculture (pp. 1-18). Lincoln, Nebraska: University of Nebraska Press.

    Google Scholar 

  • Frankel, O. H., A. H. D. Brown, and J. J. Burdon (1995). The Conservation of Plant Biodiversity. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Frey, K. J. (1996). National Plant Breeding Study-1: Human and Financial Resources Devoted to Plant Breeding Research and Development in the United States in 1994. Ames, Iowa: Iowa State University, Iowa Agriculture and Home Economics Experiment Station.

    Google Scholar 

  • Goodland, R. (1995). “The concept of environmental sustainability.” Annual Review of Ecology and Systematics 26: 1-24.

    Google Scholar 

  • Goodman, M. M. (1993). “Choosing germplasm for breeding program success.” In M. B. Callaway and C. A. Francis (eds.), Crop Improvement for Sustainable Agriculture (pp. 33-45). Lincoln, Nebraska: University of Nebraska Press.

    Google Scholar 

  • Gould, S. J. (2000). “Deconstructing the 'science wars' by reconstructing an old mold.” Science 287: 253-261.

    Google Scholar 

  • Hallauer, A. R. and J. B. Miranda (1988). Quantitative Genetics in Maize Breeding, 2nd edn. Ames, Iowa: Iowa State University.

    Google Scholar 

  • Harding, S. (1998). Is Science Multicultural? Postcolonialisms, Feminisms, and Epistemologies. Bloomington: Indiana University Press.

    Google Scholar 

  • Harlan, J. R. (1992). Crops and Man, 2nd edn. Madison, Wisconsin: American Society of Agronomy, Inc. and Crop Science Society of America, Inc.

    Google Scholar 

  • Hazell, P. B. R. (1989). “Changing patterns of variability in world cereal production.” In J. R. Anderson and P. B. R. Hazell (eds.), Variability in Grain Yields: Implications for Agricultural Research and Policy in Developing Countries (pp. 13-34). Baltimore, Maryland: Johns Hopkins University Press.

    Google Scholar 

  • Heisey, P. W. and G. O. Edmeades (1999). “Part 1. Maize production in drought-stressed environments: Technical options and research resource allocation.” In CIMMYT (ed.), World Maize Facts and Trends 1997/1998 (pp. 1-36). Mexico, D.F.: CIMMYT.

    Google Scholar 

  • Heisey, P. W., M. L. Morris, D. Byerlee, and M. A. López-Pereira (1998). “Economics of hybrid maize adoption.” In M. L. Morris (ed.), Maize Seed Industries in Developing Countries (pp. 143-158). Boulder, Colorado/Mexico, D.F.: Lynne Rienner/CIMMYT.

    Google Scholar 

  • Hildebrand, P. E. (1990). “Modified stability analysis and on-farm research to breed specific adaptability for ecological diversity.” In M. S. Kang (ed.), Genotype-by-Environment Interaction and Plant Breeding (pp. 169-180). Baton Rouge, Louisiana: Department of Agronomy, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center.

    Google Scholar 

  • Hill, J. (1975). “Genotype-environment interactions-a challenge for plant breeding.” Journal of Agricultural Science, Cambridge 85: 477-493.

    Google Scholar 

  • Hill, J., H. C. Becker, and P. M. A. Tigerstedt (1998). Quantitative and Ecological Aspects of Plant Breeding. London: Chapman & Hall.

    Google Scholar 

  • Hull, D. L. (1988). Science As a Process: An Evolutionary Account of the Social and Conceptual Development of Science. Chicago: The University of Chicago Press.

    Google Scholar 

  • Jennings, B. H. (1988). Foundations of International Agricultural Research. Boulder, Colorado: Westview Press.

    Google Scholar 

  • Jensen, N. F. (1988). Plant Breeding Methodology. New York, New York: John Wiley & Sons.

    Google Scholar 

  • Kang, M. S. and H. G. Gauch Jr. (eds.) (1996). Genotype-by-Environment Interaction. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Kang, M. S. and R. Magari (1996). “New developments in selecting for phenotypic stability in crop breeding.” In M. S. Kang and H. G. Gauch Jr. (eds.), Genotype by Environment Interaction (pp. 1-14). Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Kelley, T. G., P. P. Rao, E. Weltzien, and M. L. Purohit (1996). “Adoption of improved cultivars of pearl millet in an arid environment: Straw yield and quality considerations in Western Rajasthan.” Experimental Agriculture 32: 161-171.

    Google Scholar 

  • Kloppenburg, J. (1988). First the Seed: The Political Economy of Plant Biotechnology, 1492-2000. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lin, C. S., M. R. Binns, and L. P. Lefkovitch (1986). “Stability analysis: Where do we stand?” Crop Science 26: 894-900.

    Google Scholar 

  • Lipton, M. and R. Longhurst (1989). New Seeds and Poor People. Baltimore, Maryland: The Johns Hopkins University Press.

    Google Scholar 

  • Lynam, J. K. and R. W. Herdt (1992). “Sense and sustainability: Sustainability as an objective in international agricultural research.” In J. L. Moock and R. E. Rhoades (eds.), Diversity, Farmer Knowledge, and Sustainability (pp. 205-224). Ithaca, New York: Cornell University Press.

    Google Scholar 

  • Mann, C. (1999). “Crop scientists seek a new revolution.” Science 283: 310-314.

    Google Scholar 

  • Matson, P. A., W. J. Parton, A. G. Power, and M. J. Swift (1997). “Agricultural intensification and ecosystem properties.” Science 277: 504-509.

    Google Scholar 

  • Nader, L. (1996). “Anthropological inquiry into boundaries, power, and knowledge.” In L. Nader (ed.), Naked Science: Anthropological Inquiry into Boudaries, Power and Knowledge (pp. 1-25). New York: Routledge.

    Google Scholar 

  • Naylor, R., W. Falcon, and E. Zavaleta (1997). “Variability and growth in grain yields, 1950-1994: Does the record point to greater instability?” Population and Development Review 23: 41-58.

    Google Scholar 

  • Pandey, S., S. K. Vasal, and J. A. Deutsch (1991). “Performance of open-pollinated maize cultivars selected from 10 tropical maize populations.” Crop Science 31: 285-290.

    Google Scholar 

  • Perkins, J. H. (1997). Geopolitics and the Green Revolution: Wheat, Genes and the Cold War. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Pham, H. N., S. R. Waddington, and J. Crossa (1989). “Yield stability of CIMMYT maize germplasm in international and on-farm trials.” In J. R. Anderson and P. B. R. Hazell (eds.), Variability in Grain Yields: Implications for Agricultural Research and Policy in Developing Countries (pp. 185-205). Baltimore, Maryland: The Johns Hopkins University Press.

    Google Scholar 

  • Pingali, P. and S. Rajaram (1999). “Global wheat research in a changing world: Options for sustaining growth in wheat productivity.” In P. L. Pingali (ed.), Global Wheat Research in a Changing World: Challenges and Achievements. CIMMYT 1998-1999 World Wheat Facts and Trends (pp. 1-18). Mexico, D.F.: CIMMYT.

    Google Scholar 

  • Podlich, D. W., M. Cooper, and K. E. Basford (1999). “Computer simulation of a selection strategy to accommodate genotype-environment interactions in a wheat recurrent selection programme.” Plant Breeding 118: 17-28.

    Google Scholar 

  • Poehlman, J. M. and D. A. Sleper (1995). Breeding Field Crops, 4th edn. Ames, Iowa: Iowa State University Press.

    Google Scholar 

  • Rabinow, P. (1996). Essays On the Anthropology of Reason. Princeton, New Jersey: Princeton University Press, pp. xvii, 190.

    Google Scholar 

  • Rajaram, S., H.-J. Braun, and M. van Ginkel (1997). “CIMMYT's approach to breed for drought tolerance.” In P. M. A. Tigerstedt (ed.), Adaptation and Plant Breeding (pp. 161-167). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Romagosa, I. and P. N. Fox (1993). “Genotype x environment interaction and adaptation.” In M. D. Hayward, N. O. Bosemark, and I. Romagosa (eds.), Plant Breeding: Principles and Prospects, 1st edn. Plant Breeding Series (pp. 373-390). London: Chapman & Hall.

    Google Scholar 

  • Rosielle, A. A. and J. Hamblin (1981). “Theoretical aspects of selection for yield in stress and non-stress environments.” Crop Science 21: 943-946.

    Google Scholar 

  • Schweizer, T. (1998). “Epistemology: The nature and validation of anthropological knowledge.” In H. R. Bernard (ed.), Handbook of Methods in Cultural Anthropology (pp. 39-87). Walnut Creek: Altamira Press.

    Google Scholar 

  • Scott, J. C. (1998). Seeing Like a State: How Certain Schemes to Improve the Human Condition Have Failed. New Haven: Yale University Press.

    Google Scholar 

  • Simmonds, N. W. (1979). Principles of Crop Improvement. London, UK: Longman Group Ltd.

    Google Scholar 

  • Simmonds, N. W. (1988). “Synthesis: The strategy of rust resistance breeding.” In CIMMYT (ed.), Breeding Strategies for Resistance to the Rusts of Wheat (pp. 119-136). Mexico, D.F.: CIMMYT.

    Google Scholar 

  • Simmonds, N. W. (1990). “The social context of plant breeding.” Plant Breeding Abstracts 60(4): 337-341; 60: 337-341.

    Google Scholar 

  • Simmonds, N. W. (1991). “Selection for local adaptation in a plant breeding programme.” Theoretical and Applied Genetics 82: 363-367.

    Google Scholar 

  • Singh, A. J. and D. Byerlee (1990). “Relative variability in wheat yields across countries and over time.” Journal of Agricultural Economics 41: 21-32.

    Google Scholar 

  • Singh, M., S. Ceccarelli, and S. Grando. (1999). “Genotype × environment interaction of the crossover type: Detecting its presence and estimating the crossover point.” Theoretical and Applied Genetics 99: 988-995.

    Google Scholar 

  • Sleper, D. A., T. C. Barker, and P. J. Bramel-Cox (eds.) (1991). Plant Breeding and Sustainable Agriculture: Considerations for Objectives and Methods. Madison, Wisconsin: Crop Science Society of America, Inc., American Society of Agronomy, Inc.

    Google Scholar 

  • Smale, M., P. Heisey, and H. D. Leathers. (1995). “Maize of the ancestors and modern varieties: The microeconomics of high-yielding variety adoption in Malawi.” Economic Development and Cultural Change 43: 351-368.

    Google Scholar 

  • Soleri, D. and D. A. Cleveland (2001). “Farmers' genetic perceptions regarding their crop populations: An example with maize in the Central Valleys of Oaxaca, Mexico.” Economic Botany 55(1): 106-128.

    Google Scholar 

  • Souza, E., J. R. Myers, and B. T. Scully (1993). “Genotype by environment interaction in crop improvement.” In M. B. Callaway and C. A. Francis (eds.), Crop Improvement for Sustainable Agriculture (pp. 192-233). Lincoln, Nebraska: University of Nebraska Press.

    Google Scholar 

  • Stakman, E. C., R. Bradfield, and P. C. Mangelsdorf (1967). Campaigns Against Hunger. Cambridge, Massachusetts: Harvard University Press.

    Google Scholar 

  • Stoskopf, N. C., D. T. Tomes, and B. R. Christie (1993). Plant Breeding Theory and Practice. Boulder, Colorado: Westview Press.

    Google Scholar 

  • Streeter, C. P. (1969). A Partnership to Improve Food Production in India: A Report from the Rockefeller Foundation. New York, New York: The Rockefeller Foundation.

    Google Scholar 

  • Thompson, P. B. (1995). The Spirit of the Soil: Agriculture and Environmental Ethics. London/New York: Routledge.

    Google Scholar 

  • Tripp, R. (1995). Seed Regulatory Frameworks and Resource-Poor Farmers: A Literature Review, Network Paper 51. London: Agricultural Administration (Research and Extension) Network, Overseas Development Institute.

    Google Scholar 

  • Tripp, R. (1996). “Biodiversity and modern crop varieties: Sharpening the debate.” Agriculture and Human Values 13: 48-63.

    Google Scholar 

  • van Oosterom, E. J., M. L. Whitaker, and E. R. Weltzien (1996). “Integrating genotype by environment interaction analysis, characterization of drought patterns, and farmer preferences to identify adaptive plant traits for pearl millet.” In M. Cooper and G. L. Hammer (eds.), Plant Adaptation and Crop Improvement (pp. 383-402). Wallingford, Oxford, UK: CAB International in association with IRRI and ICRISAT.

    Google Scholar 

  • Vargas, M., J. Crossa, F. A. van Eeuwijk, M. E. Ramírez, and K. Syre (1999). “Using partial least squares regression, factoral regression, and AMMI models for interpreting genotype × environment interaction.” Crop Science 39: 955-967.

    Google Scholar 

  • Vitousek, P. M., H. A. Mooney, J. Lubchenco, and J. M. Melillo (1997). “Human domination of Earth's ecosystems.” Science 277: 494-499.

    Google Scholar 

  • Walker, T. S. and N. S. Jodha (1986). “How small farm households adapt to risk.” In P. B. R. Hazell, C. Pomareda, and A. Valdés (eds.), Crop Insurance for Agricultural Development: Issues and Experiences (pp. 17-34). Baltimore, Maryland: The Johns Hopkins University Press.

    Google Scholar 

  • Wallace, D. H. and W. Yan (1998). Plant Breeding and Whole-System Crop Physiology: Improving Crop Maturity, Adaptation and Yield. Wallingford, Oxon, UK: CAB International.

    Google Scholar 

  • Wilson, E. O. (1998). Consilience: The Unity of Knowledge. New York: Knopf.

    Google Scholar 

  • Yan, W. and L. A. Hunt (1998). “Genotype by environment interaction and crop yield.” Plant Breeding Reviews 16: 135-178.

    Google Scholar 

  • Zeven, A. C. (1998). “Landraces: A review of definitions and classifications.” Euphytica 104: 127-139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleveland, D.A. Is plant breeding science objective truth or social construction? The case of yield stability. Agriculture and Human Values 18, 251–270 (2001). https://doi.org/10.1023/A:1011923222493

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011923222493

Navigation